FILES AND NAVIGATION SERVICES

Demonstration Program: Files

Introduction

This chapter addresses:

* Creating, opening, reading from, writing to, and closing files.

e Navigation Services, an application programming interface that allows your application to provide
a user interface for navigating, opening, and saving Mac OS file objects.

Files

Types of Files

A file is a named, ordered sequence of bytes stored on a volume. The files associated with an application
are typically:

e The application file itself, which comprises the application's executable code and any application-
specific resources and data.

¢ Document files created by the user using the application, which the user can edit.

e A preferences file created by the application to store user-specified preference settings for the
application.

The Operating System also uses files for certain purposes. For example, as stated at Chapter 9, the File
Manager uses a special file called the volume's catalog file to maintain the hierarchical organisation of
files and folders in a volume.

Files and Navigation Services Version 1.0 18-1

Characteristics of Files

File Forks

Macintosh files comprise two forks, called the data fork and the resource fork. The resource fork
contains a resource map and resources. Unlike the bytes stored in the resource fork, the bytes in the data
fork do not have to have any particular internal structure. Your application must therefore be able to
interpret the bytes in the data fork in an appropriate manner.

All Macintosh files contain a data fork and a resource fork; however, one or both of these forks may, in
fact, be empty. Fig 1 shows the typical contents of the data and resource forks of an application file and a
document file.

APPLICATION FILE DOCUMENT FILE

J i | J

POWERPC DESCRIPTIONS OH USER'S DATA LAST LOCATION AND
APPLICATION CODE MENUS, DIALOG SIZE OF WINDOW.
BOXES, ICONS, ETE.
MISSING
TEXT STRINGS FOR APPLICATION NAM
DIALOG BOXES.
PAPER SIZE

SPECIFIED IN PAG
SETUP... DIALOG

DATA FORK RESOURCE FORK DATA FORK RESOURCE FORK

FIG 1 - TYPICAL CONTENTS OF DATA FORKS AND RESOURCE FORKS IN APPLICA

If your data can be structured as a resource, you might elect to store that data in the resource fork, in which
case you use Resource Manager functions to both store and retrieve it. Retrieving data from a resource
fork is a comparatively simple matter because all you have to do is pass the resource type and ID to the
relevant Resource Manager function.

If it 1s neither possible nor advisable to store the data in the resource fork, you must store it in the data fork.
This is normally the favoured option for storing, for example, a document's text. In this case, you use File
Manager functions to store and retrieve the data. With File Manager functions, unlike Resource Manager
functions, you can access any byte, or group of bytes, individually.

Generally speaking, unless the data created by the user will occupy only a small number of resources, you
should store it in the data fork. Always bear in mind that the Resource Manager was not designed as a
general purpose data storage and retrieval system.

File Size

Volumes

A volume, which can be an entire disk or only part thereof, is that part of a storage device formatted to
contain files. Ordinarily, file size is limited only by the size of the volume that contains it.

Logical Blocks and Allocation Blocks

Volumes are formatted into logical blocks. Each logical block can contain up to 512 bytes, the actual size
being of interest only to the disk device driver. When the File Manager allocates space for a file, it
allocates it in units called allocation blocks, which are groups of consecutive logical blocks. A non-empty
file fork always occupies at least one allocation block.

The size of an allocation block is the chief distinguishing feature between the volume format known as the
Hierarchical File System (HFS) and the newer Hierarchical File System Plus (HFS Plus or HFS+)
introduced with Mac OS 8.1. The differences are as follows:

18-2 Version 1.0 Files and Navigation Services

e HFS (Mac OS Standard Format). For HFS-formatted volumes, the File Manager can
access a maximum of 65,535 allocation blocks on any volume. Thus the larger the volume, the

larger the allocation block. For example, on a 500 MB volume, the allocation block size is 8KB
under HFS.

e HFS Plus (Mac OS Extended Format). For HFS Plus-formatted volumes, the File
Manager can access a maximum of 4.29 billion allocation blocks on any volume. This means that

even huge volumes can be formatted with very small allocation blocks. The default volume format
for Carbon is HFS Plus.

Note

Beginning with Mac OS 9, HFS Plus introduced support for long Unicode filenames, files larger than
2GB, and extended file attributes. The additional File Manager constants, data types, and functions
introduced at that time are often referred to as the HFS Plus API.

On large volumes, the significant reduction in allocation block size under HFS Plus results in significant
space savings. For example, on a 4 GB volume, a file containing only 4 KB of information requires 64 KB
of space under HFS, whereas the same file requires only 4KB of space under HFS Plus.

Physical and Logical End-Of-File

There is a difference between the amount of space allocated to a file and the number of bytes of actual data
in the file. This is reflected in the two numbers used to describe the size of a file:

e Physical End-Of-File. The physical end-of-file is the number of bytes currently allocated to
the file by the File Manager. Since the file's first byte is byte number 0, the physical end-of-file is 1
greater than the number of the last byte in its last allocation block. The physical end-of-file is thus
always an exact multiple of allocation block size.

e Logical End-Of-File. The logical end-of-file is one greater than the number of bytes that
currently contain data.

Fig 2 illustrates logical end-of-file and physical end-of-file.

LOGICAL END-OF-FILE (BYTE-509) PHYSICAL END-OF-FILE (BYTE-}0
BYTE 0 511512 1023
y 1 vy ’
LOGICAL BLOCKk—5 LOGICAL BLOCK—6————>
ALLOCATION BLOCK—3

FIG 2 - LOGICAL AND PHYSICAL END-OF-FILE

Your application can adjust the size of a file by moving the logical end-of-file. If, when you increase the
size of a file, the logical end-of-file is moved past the physical end-of-file, one or more allocation blocks
are automatically added to the file by the File Manager. By the same token, the File Manager
automatically deletes the unneeded allocation block if you move the logical end-of-file more than one
allocation block short of the current physical end-of-file.

Clumps and Combating File Fragmentation

The volume's clump size determines the number of allocation blocks added to the file when you move the
logical end-of-file past the physical end-of-file. The File Manager enlarges files by adding clumps (which
are groups of contiguous allocation blocks) as a way of reducing file fragmentation and improving
input/output performance.

Files and Navigation Services Version 1.0 18-3

Your application can also takes steps to reduce file fragmentation. Suppose you are extending a file with
multiple write operations. If you know before you begin how large the file is likely to become, you should
first call seteOF to set the file to that size.

File Access

The operations your application can perform on a file depend on whether it is open or closed. For example,
reading and writing operations can only be performed on open files, and deleting operations can only be
performed on closed files.

Access Path and File Reference Number

When a file is opened, the File Manager reads in file information and creates an access path to the file.
The file information is stored in a file control block (FCB). The access path, which is assigned a unique
file reference number, specifies the volume on which the file is located and the location of the file on that
volume.

File Mark

The File Manager maintains a file mark (a current-position marker) for each access path. The file mark,
which is moved each time a byte is read or written, is the number of the next byte to be read or written. By
setting the file mark or specifying an offset, you can control the beginning point of a read or write
operation.

Data Buffer

When it transfers data to or from your application, the File Manager uses a data buffer in RAM. You
must therefore pass the address of this data buffer whenever you read or write a file's data.

Disk Cache

The File Manager uses an intermediate buffer, called the disk cache, when reading data from, or writing
data to, the file system.

During a write operation, data is transferred from your application's data buffer to the disk cache. During a
read operation, the File Manager looks for data in the disk cache and, if data is found in the cache, transfers
that data to your application's data buffer. If the File Manager finds no data in the disk cache, it reads the
requested number of bytes from the disk directly to your application's data buffer.

The Hierarchical File System

Directories and Directory ID

The method used to organise files on a Macintosh volume is called a hierarchical file system. In this
system, files are grouped into directories (also called folders). These directories may, in turn, be grouped
into other directories (see Fig 3). As shown at Fig 3, each directory has a number associated with it called
the directory ID.

(3
VOLUME
v ! R
L' 11 L' 21
= =

2 2 v na v v
[27 L' 35 [43

I]] = |
v v v v v v

FIG 3 - MACINTOSH HIERARCHICAL FILE SYSTEM

18-4 Version 1.0 Files and Navigation Services

Root Directory

The Finder and the File Manager work together to maintain the organisation of files and folders on a
volume, ensuring that the representation on the desktop corresponds directly to the hierarchical directory
structure on the volume. In file system parlance, the volume is referred to as the root directory, and the
folders are referred to as subdirectories (or simply as directories).

Mounted Volumes

When a volume is mounted, the File Manager places information about the volume in a volume control
block (VCB) and assigns a volume reference number by which you can refer to the volume until it is
unmounted. Mounted volumes appear on the desktop.

You can identify a volume by its volume reference number or by its volume name. To avoid confusion
between volumes with the same name, you should ordinarily use the volume reference number to refer to a
volume.

When a volume is unmounted, the volume control block is released and the volume is no longer known to
the File Manager.

Parent Directory and Parent Directory ID

The directory in which a subdirectory is located is referred to as a parent directory. A parent directory is
assigned a parent directory ID. A special parent directory ID is assigned by the File Manager to a
volume's root directory. All this facilitates a consistent method of identifying files and directories using
the volume reference number, the parent directory ID, and the file or directory name.

Generally speaking, your application does not need to keep track of the location of files in the file system
hierarchy. The location of most of the files your application opens and saves is provided by either the
Finder or Navigation Services.

Aliases

An alias is a special kind of file that represents another file, folder, or volume. The Finder and Navigation
Services automatically resolve aliases.

Identifying Files and Directories — File
System Specification Structure and File
System Reference

Three pieces of information are all that is needed to identify a file or directory: a volume reference number;
a parent directory ID; the name of the file or directory. Of relevance is this regard are two data types,
namely, the file system specification structure and the opaque file system reference:

struct FSSpec

short vRefNum; // Volume reference number.
long parlD; // Directory ID of parent directory.
Str63 name; // Filename or directory name.

b

typedef struct FSSpec FSSpec;

typedef FSSpec *FSSpecPtr, **FSSpecHandle;

struct FSRef

{
UInt8 hidden[80];
+
typedef struct FSRef FSRef;
typedef FSRef *FSRefPtr;

The opaque data type FSRef, whose purpose is similar to that of the file system specification structure, was
introduced with the HFS Plus API. Note that there is no need to call the File Manager to dispose of an
FSRef when it is no longer needed.

Files and Navigation Services Version 1.0 18-5

Creating, Opening, Reading From, Writing To, and Closing Files

Your application typically creates, opens, reads from, writes to, and closes files in response to the user
choosing commands from the File menu. In addition, your application opens, reads from, writes to, and
closes files in response to the required Apple events (see Chapter 10).

The following describes how to perform typical file operations within the context of a user choosing
commands from an imaginary application's File menu and, on Mac OS X, the Quit command. For the
purposes of illustration, the assumption is made that the files involved store text documents and that, when
retrieved from file, the documents are displayed in a window with scroll bars.

General File Menu and Required Apple Events
Handling Strategy

A suggested general strategy for handling user choices of the New, Open..., Close, Save, Save As..., Revert,
and Quit commands, and for responding to the required Apple events, is illustrated at Fig 4.

Preliminaries - Creating a Document
Structure

The contents of document files are displayed in windows. Ordinarily, your application should define a
document structure which contains information about the window and information about the file whose
contents are displayed in the window. The following is an example of a document structure for an
application that handles text files:

typedef struct

ControlHandle vScrollBarHdl; // Handle to vertical scroll bar.
ControlHandle hScrollBarHdl; // Handle to horizontal scroll bar.
SInt16 fileRefNum; // File reference number for window's file.
FSSpec fileFSSpec; // File's file system specification structure.
TEHandle textEditHdI; // Handle to TextEdit structure.
Boolean windowTouched; // Has window's data changed?

} documentStructure;

typedef documentStructure *documentStructurepPtr;
typedef documentStructure *documentStructureHdl;

Note the fileRefNum and fileFSSpec fields. Note also that the last field (windowTouched) 1s used to record
whether the content of the document in memory differs from that in the associated file. Your application
should set this field to false when it first reads in the file and immediately after each save, and to true when
the content of the document in memory is changed by the user after the first read-in and after the
subsequent saves. If the windowTouched field is set to true and the user attempts to close the document
window, your application should present an alert asking the user whether the changed version of the
document should be saved.

Document structures can be associated with the relevant window by storing a handle to the structure in the
window object using the function SetwRefCon.

Creating a New Document Window

The user creates a new untitled document window using the New... command in the File menu. In addition,
it is usual for an application to open a new untitled document window when it receives an Open
Application Apple event from the Finder. (See doNewCommand at Fig 4.)

Although the function which responds to the user choosing the New... command and Open Application
Apple event opens a new window, it should not create a new file. The reason for this is that, in the event,
the user may elect not to save the document. It is thus preferable to wait until the user decides to save the
new document before creating a file. Accordingly, the fileRefNum field of the new window's document
structure should be set to 0 to indicate that no file is currently associated with this window.

18-6 Version 1.0 Files and Navigation Services

Opening a File and Reading in Data

Your application will need to open a file when the user chooses the Open... command from the File menu
(see doopenCommand at Fig 4) and when it receives Open Documents and (on Mac OS 8/9) Print
Documents Apple events.

Opening the Navigation Services Open Dialog

Your application's initial response to the user choosing the Open... command from the File menu should be
to elicit a file selection from the user by creating and displaying a Navigation Services Open dialog (see
Fig 6).

Files and Navigation Services Version 1.0 18-7

doNewComm
Call doNewDocWinet
(If responding to a
Re-Open Apple Even
doNewDocWindow o
no windows are currg

doOpenCom

Service®penlialog. |

types to display.

Create and display Nav
:%Fpropriate, specify [the
e

IWhen the user addrgss

Mew N

Open... #0

Close FEW

Save ;S I
S5ave As...]
Revert

Quit MyApp #0Q .

ddoCloseCom
Get front window.

If front window is
= "touched", create an

display a Nav Servic
eSave Change alert.

D

(@)

REQUIRED APPLE E

OPEN APPLICATION
RE-OPEN APPLICATICGIN
OPEN DOCUMENTS
PRINT DOCUMENTS
QUIT APPLICATION

doSaveAsCom
Get front window.

, Create and display a[N
SgrvicesSave Locatign

lddoSaveComm
Get front window.

If the window has a LI\ e
call doWritefFile.

If the window does n
Hhve a file, call

|

open.) the dialog, call the user addresses the qoSaveAsCommaneH | the dialog, and clickg t
doOpenfFile, alert: in
. . 1. If the Save buttgy is whether to save using
doNewDocWingh clicked, call FSSpec or an FSRef.
Open new window. l doOpenFile gr?SaveCom(rjntang, | If saving using an FSr
Allocate space for, ahd-Call doNewDocWindow to o Proce€d 50 <. call doSaveUsingFSSpe
initialise, a docume open new window. 2. If the Don't Sav If saving using an FSRe
structure, and attact tt button is clicked, clpse

1Set window title.

Open file's data fork
read and write.

document structure fo
window.

Call doReadFile to
in file date].

[

doReadFile

Get file reference n
Set file mark at sta

I

the file, flush the
volume, and releas
memory associated
the file's data.

If the front window i

r

d

"touched", close th

release memory ass

e
flush the volume, ar{tj

)é(y_ith the file's data.

call doSayeUsingFR

doSaveUsingF

If the user is not repllad
n existing file, creafe
mgﬁew file, specifying qre
Fand file type.
y file reference n
agér%) FSSpec to windg
document structure
window's title.

LIfthe user is replacir
afyisting file, delete
being replaced.

nG&eate a new file wit
sUnicode name, and
dgeptor and file type

Copy FSSpec obtaingd

un
WI
AN

Get file length and a Ioﬁ Open the file's data forkfile creation to windqw
doRevertCom || sy _ Call doWriteFile. document structure gn
Get file name from frmrtRead in the data. Find the temporary fiplder window's title.
window's title. i<plav the dat on the file's volume,||of Open the file's data fol
Create and display g \Iagpljsbprc?griatee ata as create it if necessary Call doWriteFile.
Sevices Discard Chappe Create a temporary file in
alert. the temporary foldef and d
When the user addre¢gses open its data fork. oCopyAppNa
;csr]iliE)clEerE:i'lf the OK buitton Call doWriteData tolw Resource

' the data to the data [forto . Create and open the|fi
t1. CaIcIj 'doth{’leafcij|F”C the temporary file. Settf(ijlata adlfretsstantﬂj Sl#8source fork.
o read in the file. et file mark at star)
> ch the window" Close the temporary| ﬁIW te data to fi Call doCopyResowe

. ange the Wln: ow's and the existing file. rite data to file. speC!fymg thg apphl

document'structur-“to S the data in th Adjust file size. missing application 13
flag the window ag "not e“{g{?n (ng ?elrr;\ oear Find the volume the Hie TR’ resource as the

" Xisti i
touched". flos. g p on and flush the vollineresource to copy.

Note: On Mac OS X, when more than one do
with unsaved changes is open and the user ¢
the Quit command or a Quit Application Appl
received, a Review Changes alert should be

doCloseCommand should be called if the use
the Review Changes... button in that alert.

Delete the temporarn

c(Bren the existing
hogises

Close the resource fi

| doCopyResoul

Set source resource fil¢
get resource, detac

IEhange window's
e document structure
window as "not touc

D
e

repisksation name str
the resource fork.

ecﬁ?@ggéppNameRes:ource
DRSSED he miS:illy
ng to

resource, set destingti
resource file and wrife
resource to destinatipr

FIG 4 - GENERAL FILE MENU, QUIT ITEM, AND REQUIRED APPLE EVENTS HANDLIN(

Calls to the Navigation Services 3.0 functions NavCreateGetFileDialog and NavDialogRun create and display the
Navigation Services Open dialog. When the user addresses the dialog, selects one or more files, and clicks
the Open button, your application examines the selection field of a NavReplyRecord structure (see Navigation

18-8 Version 1.0

Files and Navigation Services

Services, below) and disposes of the dialog. The selection field is an Apple Event descriptor list
(AEDescList). You can determine the number of files in the list by calling the Apple Event Manager function
AECountitems. Each selected file object is described in an AEDesc structure. You can coerce this descriptor
into a file system specification (FSSpec) structure to perform operations such as opening the file.

Creating a Window and Opening the File

The next steps are to call a function (doNewDocWindow at Fig 4) to create a window and associated document
structure and open the selected file's data fork (doOpenFile at Fig 4).

The file's data fork is opened using FSpOpenDF:

OSErr FSpOpenDF(spec,permission,refNum);
FSSpec *spec; File system specification structure.
SInt8 permission; Access mode.

short *refNum; Returned file reference number.

FSpOpenDF takes the FsSpec returned by Navigation Services as its first parameter. The permission field
specifies the access mode for opening the file. The access mode may be specified using one of the
following constants:

Constant Valu Description

e
fsCurPerm 0 Whatever permission is allowed.
fsRdPerm 1 Read permission.
fsWrPerm 2 Write permission.
fsRdWrPerm 3 Exclusive read/write permission.
fsRAWrShPerm 4

Shared read/write permission.

FSpOpenDF returns, in its third parameter, a file reference number. This reference number should be saved
to the window's document structure so that it can be readily retrieved for use as a parameter in calls to
functions which read from and write to the file.

Reading File Data

When you have opened a file, you can read data from it. Ordinarily, you will want to read data from the
file when the user first opens it. And your application will have to read data from the file when the user
chooses the Revert command in the File menu to revert to the last saved version of the document (see
doRevertCommand at Fig 4). Typically, a function for reading file data:

e Retrieves the file reference number from the document structure.

e (alls setFpos to set the file mark to the beginning of the file:

OSErr SetFPos(refNum,posMode,posOff);
short refNum; File reference number.
short posMode; Positioning mode.

long posOff; Positioning offset.

The posMode parameter must contain one of the following constants:

Constant Value Description

fsAtMark 0 Remain at current mark.

fsFromStart 1 Set mark relative to beginning of file.
fsFromLEOF 2 Set mark relative to logical end of file.
fsFromMark 3 Set mark relative to current mark.
rdVerify 64 Add to above for read-verify.

® Determines the number of bytes in the file by calling GeteOF:

OSErr GetEOF(refNum,logEOF);
short refNum; File reference number.
long *logEOF; Receives length of file, in bytes.

Files and Navigation Services Version 1.0 18-9

e (alls FsRead to read the specified number of bytes from the file into the specified buffer:

OSErr FSRead(refNum,count,buffPtr);

short refNum; File reference number.

long *count; On input: bytes to read. On output: actual bytes read.
void *buffPtr; Address of buffer into which bytes are to be read.

Note that FSRead returns, in the count parameter, the actual number of bytes read.

Saving a File

The user can indicate that the current contents of a document should be saved:

* By choosing Save or Save As... from the File menu.

e By clicking the Save button in the Navigation Services Save Changes alert you present when the
user attempts to close a "touched" window.

* By clicking the Save button in the Navigation Services Save Changes alert you present when the
user attempts to quit the application while a "touched" window remains open.

Handling the Save Command
To handle the Save command (see doSaveCommand at Fig 4), your application should:

e Check the file reference number field of the window's document structure to determine if the
window already has a file.

e [fthe window already has a file, call the function for writing files to disk (see dowriteFile at Fig 4). If
the window does not have a file, call the function for handling the Save As... command.

Handling the Save As... Command

To handle the Save As... command (see doSaveAsCommand at Fig 4), your application should proceed as
follows:

e (all the Navigation Services 3.0 functions NavCreatePutFileDialog and NavDialogRun to create and
display the Navigation Services Save Location dialog (see Fig 10).

When the user addresses the dialog and clicks the Save button, your application examines the
selection field of a NavReplyRecord structure (see Navigation Services, below) and disposes of the
dialog. The selection field is an Apple Event descriptor list (AEDescList). The file object is described
in an AEDesc structure. If your application is running on Mac OS X, you will be able to coerce this
data to type FSRef. If this coercion fails (meaning that your application is running on Mac OS 8/9)
you will be able to coerce the data to type Fsspec. The FSRef or FsSpec will be required for the save
operation.

e Save Using FSRef. If the coercion to type FSRef succeeds:

e (Call AEGetDescData to extract the data from the dataHandle field of the AEDesc structure. This is
the FsRef for the parent directory.

e (Call cFstringGetCharacters to extract into a buffer the contents of the string referenced in the
saveFileName field of the NavReplyRecord structure.

e Ifthe replacing field of the NavReplyRecord structure contains true, call the HFS Plus API
function FSMakeFSRefUnicode to create an FSRef for the file, passing in the FSRef for the parent
directory and the extracted filename characters. Pass this FSRef in a call to FSDeleteObject to
delete the file:

OSErr FSDeleteObject(ref);
const FSRef *ref; Pointer to FSRef specifying file or directory to delete.

e (all FscreateFileUnicode, passing in the FSRef for the parent directory and the extracted
filename characters, to create a new file with a Unicode name:

OSErr FSCreateFileUnicode(parentRef,namelLength,name,whichinfo,cataloginfo,

18-10 Version 1.0 Files and Navigation Services

newRef,newSpec);

const FSRef *parentRef; FSRef for directory where file to be created.
UniCharCount namelength; Length of file's name.
const UniChar *name; Unicode name for file.

FSCataloglinfoBitmap whichinfo; Catalog information fields to be set, if any.
const FSCataloginfo *cataloginfo; Values of file's catalog infoformation.
FSRef *newRef; On return, FSRef for new file.

FSSpec *newSpec; On return, FSSpec for new file.

e (all FspGetFinfo, passing in the FSSpec received in the last parameter of the call to
FSCreateFileUnicode. Assign the file type and creator to the relevant fields of the obtained Finfo
structure and call FSpSetFinfo to set the Finder information.

* Assign the file system specification (FSSpec) structure to the file system specification
structure field of the window's document structure.

e (Call FspopenDF to open the data fork.

e Assign the file reference number returned by FSpopenDF to the file reference number field of
the window's document structure.

e (all setwritle to set the window's title, using the string extracted from the name field of the
file system specification (FSSpec) structure.

e (all the function for writing files to disk (see dowriteFile at Fig 4).
e Save Using FSSpec. If the coercion to type FSRef does not succeed:

e (all the Navigation Services 3.0 function NavDialogGetSaveFileName to get the file name from
the edit text field of the Save Location dialog, convert it to a Pascal string using
CFStringGetPascalString, and assign that string to the name field of the file system specification
(FSSpec) structure.

e [fthe replacing field of a NavReplyRecord structure does not contain true, call FSpCreate to create
a new file and set the file type and creator:
OSErr FSpCreate(spec,creator,fileType,sciptTag);
FSSpec *spegc; File system specification structure.
OSType creator; File creator.

OSType fileType; File type.
ScriptCode scriptTag; Code of script system in which filename is displayed.

e Assign the coerced file system specification (FSSpec) structure to the file system specification
structure field of the window's document structure.

¢ [fthe window already has a file (that is, if the file reference number field of the document
structure does not contain 0), close that file with a call to FSClose:

OSErr FSClose(refNum);
short refNum; File reference number.

e (all FspopenDF to open the data fork.

¢ Assign the file reference number returned by FSpopenDF to the file reference number field of
the window's document structure.

e (Call setwritle to set the window's title, using the string extracted from the name field of the
file system specification (FSSpec) structure.

e (all the function for writing files to disk (see dowriteFile at Fig 4).

Writing File Data

The function for writing data (see dowriteFile at Fig 4) should write to a temporary file, not to the document
file itself. If you write directly to the document's file, you risk corrupting that file if the write operation
does not complete successfully. The broad approach for saving data safely to disk is therefore to write the
data to a temporary file and then, assuming the temporary file has been written successfully, swap the
contents of the temporary file and the document's file.

Files and Navigation Services Version 1.0 18-11

The procedure for updating a file safely is as follows:

Get the file system specification from the document structure.
Create a temporary filename for the temporary file.

Call FindFolder to find the temporary folder on the file's volume, or create it if necessary:

OSErr FindFolder(vRefNum,folderType,createFolder,foundVRefNum,foundDirlD);
short vRefNum; Volume reference number.

OSType folderType; Folder type for volume.

Boolean createFolder; kCreateFolder or kDontCreateFolder.

short *foundVRefNum; Volume reference number for folder found.

long *foundDirlD; Directory ID of folder found.

Call FsmakeFsspec to make a file system specification structure for the temporary file:
OSErr FSMakeFSSpec(vRefNum,dirID,fileName,spec);

short vRefNum; Volume reference number.
long dirlD; Parent directory ID.
ConstStr255Param fileName; Full or partial pathname.
FSSpec spec; Pointer to FSSpec structure.

Call Fspcreate to create the temporary file, and FSpOpenDF to open the temporary file's data fork.
Call the function for writing data to a file (see dowriteData at Fig 4). This function should:

e Retrieve the address and length of the buffer (for example, from a TextEdit structure).

® (all setFPos to set the file mark to the beginning of the file.

e (Call Fswrite to write the buffer to the file:

OSErr FSWrite(refNum,count,buffPtr);

short refNum; File reference number.

long *count; On input: bytes to write. On output: bytes written.
const void *buffPtr; Address of buffer containing data to write.

® (Call seteoF to resize the file to the number of bytes actually written:

OSErr SetEOF(refNum,logEOF);
short refNum; File reference number.
long logEOF; Logical end-of-file.

e (Call GetvRefNum to determine the volume containing the file:

OSErr GetVRefNum(refNum,vRefNum);
short refNum; File reference number.
short *vRefNum; Receives volume reference number.

e (Call Flushvol to flush the volume:
OSErr FlushVol(volName,vRefNum);

ConstStre3Param volName; Pointer to name of mounted volume
short vRefNum; Volume reference number.

Flushing the volume ensures that both the file's data and the file's catalog entry' are updated.

Call Fsclose to close the temporary file.
Call Fsclose to close the existing file.

Call FspExchangeFiles to swap the contents of the temporary file and the existing file:

OSErr FSpExchangeFiles(source,dest);
const FSSpec *source; Source file.
const FSSpec *dest; Destination file.

FSpExchangeFiles does not actually move the data on the volume. It merely changes the information
in the volume's catalog file and, if the files are open, their file control blocks (FCBs).

1

The catalog entry for a file contains fields that describe the physical data (such as the first allocation block and the physical

and logical ends of both the resource and data forks) and fields that describe the file within the file system, such as file ID and
parent directory ID.

18-12

Version 1.0 Files and Navigation Services

e (all FspDelete to delete the temporary file:

OSErr FSpDelete(spec);
const FSSpec *spec; File system specification.

e (all rFspopenDF to re-open the data fork of the existing file.

As a final step for Mac OS 8/9, you should call a function which copies the missing application name
string resource (see Chapter 9) from the resource fork of the application file to the resource fork of the
newly created file. This function (doCopyAppNameResource at Fig 4) should:

e (all FspcreateResFile to create the new file's resource fork:

void FSpCreateResFile(spec,creator,fileType,sciptTag);
const FSSpec *spec; File system specification structure.
OSType creator; File creator.

OSType fileType; File type.

ScriptCode scriptTag; Code of script system.

e (Call FspopenResFile to open the resource fork:
short FSpOpenResFile(spec,permission);

const FSSpec *spec; File system specification structure.
SignedByte permission; Permission code.

The constants used to specify the access mode in the FSpopenDF call (see above) are also used to
specify the permission code in the FSpOpenResFile call.

e (all a function (doCopyResource at Fig 4), which copies specified resources from one resource file to
another, to copy the missing-application name 'STR ' resource (ID -16396) from your application's
resource fork to the resource fork of the newly-created file.

e (all Fsclose to close the resource fork.

Reverting to a Saved File

To allow the user to revert to the last saved version of a document, your application can include a Revert
command in the File menu. To handle this command (see doRevertCommand at Fig 4), you should call the
Navigation Services 3.0 functions NavCreateAskDiscardChangesDialog and NavDialogRun to create and display a
Navigation Services Discard Changes alert (see Fig 13). When the user addresses the dialog, and clicks on
the OK button, you simply call your function for reading file data (doReadFile at Fig 4) to read the file back
into the window.

Closing a File

Your application should ordinarily close a file when the user clicks in the close box of the associated
window or chooses the Close command from the File menu. You may also need to close files when the user
chooses Quit from the File menu or a Quit Application Apple event is received from the Finder.

When your application needs to close a file, it should first check whether the associated window has been
"touched" (see doCloseCommand at Fig 4). If the window has been "touched", you should call the
Navigation Services 3.0 functions NavCreateAskSaveChangesDialog and NavDialogRun to create and display a
Navigation Services Save Changes alert (see Fig 12). When the user addresses the dialog:

e [fthe Save button is clicked, call the function for saving files (doSaveCommand at Fig 4), call FsClose
to close the file, call Flushvol to ensure that both the file's data and the file's catalog entry are
updated, set the file reference number field in the document structure to 0, and release memory
associated with the storage of the file's data. Then dispose of the document structure and, finally,
the window.

e [fthe Don't Save button is clicked, perform the same actions as are performed when the Save button
is clicked except for the call to the function for saving files.

If the window has not been "touched", perform the same actions as are performed when the Save button is
clicked in a Save Changes alert except for the call to the function for saving files.

Files and Navigation Services Version 1.0 18-13

File Synchronisation Functions

It is always possible that, while a document file is open, the user may drag its Finder icon or proxy icon to
another folder (including the Trash) or change the name of the file via the Finder icon. The application
itself has no way of knowing that this has happened and will assume, unless it is informed otherwise, that
the document's file is still at its original location with its original name. For this reason, applications often
include a frequently-called file synchronisation function which synchronises the application with the
actual current location (and name) of its currently open document files.

In applications which use the Classic event model, file synchronisation functions should be called after
every call to waitNextEvent. In applications that use the Carbon event model, a timer should be installed to
trigger repeated calls to the file synchronisation function. For each of the application's document windows,
the synchronisation function should update the application's internal data structures to match that of the
document file as it exists on disk. The function should also ensure that, where necessary, the name of the
document window is changed to match the current name of the document file on disk and close the
document window if the document file has been moved to the Trash folder.

Navigation Services

The user interface for opening and saving files, confirming saves and discarding changes, choosing a
volume, folder, file, or file object, creating a new folder, file format translation, and easy navigation of the
file system is provided by Navigation Services.

The following reflects Navigation Service 3.0, which was introduced with CarbonLib 1.1, and which
established a new model for the creation, display, and handling of Navigation Services dialogs and alerts.
Navigation Services 3.0 also introduced support for Unicode and, on Mac OS X, support for sheets and the
ability to specify the modality of a dialog.

Navigation Services Dialogs and Alerts

The primary dialogs created by Navigation Services are as follows:
* Open.
e Save Location.
® Choose a Volume.
* Choose a Folder.
* Choose a File.
* Choose a File Object.

The primary alerts created by Navigation Services are as follows:

e Save Changes
e Discard Changes.

A further alert, which is applicable only on Mac OS X, and for which no Navigation Services creation
function existed at the time of the first release of Mac OS X, is the Review Changes alert.

The secondary dialogs and alerts created by Navigation Services are as follows:

¢ New Folder dialog.
e Replace Confirmation alert.

e Mac OS 8/9 Stationery option dialog.
Modality

On Mac OS 8/9, all primary Navigation Services dialogs are movable modal provided an application-
defined event handling (callback) function is provided.

18-14 Version 1.0 Files and Navigation Services

On Mac OS X, your application should ensure that:
* The Save Location dialog, Save Changes alert, and Discard Changes alert are window-modal (that
is, sheets).

e The other primary dialogs are application-modal.
Standard User Interface Elements in
Primary Dialogs

The standard user interface elements in Navigation Services primary dialogs are shown at Fig 5.

The standard interface element names appeardH®RDES$TS BEVEL BUTTON

FAVOURITES BEVEL BUTTON
| LOCATION POP-UP MENU BUTTON | Ly
| | RECENT BEVEL BUTTON
1

————————— Openfiles——af———
07 2 2 SORT ORDER
[achaplﬂ demo carbo.. L] Em BEVEL BUTTON

Date Madified

b £ riies vara
. PICT Document
BROWSER [® TFT Bocumen + BROWSER LIST
L\ % [~ ;
Showr: [J\II Filas Dodumants i] [Hida Praviaws]é—PREVlEW BUTTON
SHOW PUSH N
BUTTON _@_I (__Cancer] | open "/m
SORT KEY BEVEE " —~1SIZEB
BUTTONS | CANCEL PUSH BUTTIOREFAULT PUSH BUTTON
Open: Files
LOCATION
From: [Documents ?'1(—— POP-UP MENU
~ BUTTON
= Chimpanzees.txt .
2 Gibbons.txt Favourite
= Oranguians.txt Places and
[PICT Document Recent Places
COLUMN B TEXT Document .SECtlonS apPeE
BROWSER in the Locatior
pop-up menus

. EDIT TEXT
Go to: " FEW
{ Add to Favorites { cancel w
7|< “_"7F Pl RESIZE
[[CONTROL

| ADD TO FAVOURITES PUSH BUT CANCEL PUSH BUTTIOREFAULT PUSH BUTTON

FIG 5 - STANDARD USER INTERFACE ELEMENTS IN NAVIGATION

Preview

On Mac OS 8/9, the user can toggle a preview area on an off using the Show/Hide Preview push button in
the Open dialog. A preview of any file that contains a valid 'pnot' resource will be displayed in this area.

On Mac OS X, the preview appears in the column browser as shown at Fig 5. For files of type 'TEXT' a
preview is automatically created.

Persistence

Navigation Services has the ability to store information, and to store it on a per-application basis. This
ability is called persistence. For example, when a primary dialog is displayed, the browser defaults to the
directory location that was in use when that particular dialog was last closed by that particular application.
In addition, if a file or folder was selected when the dialog was last closed, that file or folder is
automatically selected when the dialog is re-opened. For dialogs that are not sheets, the size, position, and,
on Mac OS 8/9, sort key and sort order are also remembered for each application.

Files and Navigation Services Version 1.0 18-15

Creating and Displaying an Open Dialog

The Open dialog (see Fig 6) is created by a call to NavCreateGetFileDialog and displayed by a call to

NavDialogRun. You pass a universal procedure pointer to an application-defined event handling (callback)

function in the inEventProc parameter of NavCreateGetFileDialog.

OIJEI’I:F"ESE Dpen: Files
chap10 dcmo carbo.. | # E-m .
(5] B W, Show: | All Files Documents ?‘
Date Modified |2 x
fr) ruies vama af1 1700 From:—{ gRUctlmens T‘
[1 PICT Document 8/11/00 :
himpanzaae tx
[TFT Dacument 204101 T aIRBaRE
Orangutans.txt
| ij PICT Document
[+ | B TEXT Document
Shouwr: [All Filas Documants i] [Hida Praviaw:]
[Cancel] “ Open]| - =
i

Note: The Show pop-up menu button appears only if a handl&té&a
NavTypelList structure isipa$sethTypelList parameter of the , .. .0 ravorites

g : { Cancel ¥ 0)
NavCreateGetFileDialog function e S

FIG 6 - NAVIGATION SERVICES OPEN DIALOG

The NavDialogCreationOptions
Structure

You pass a pointer to a NavDialogCreationOptions structure, which specifies options controlling the
appearance and behaviour of the dialog, in the inOptions parameter of NavCreateGetFileDialog. The
NavDialogCreationOptions structure is as follows:

struct NavDialogCreationOptions

Uintl6 version;
NavDialogOptionFlags optionFlags;
Point location;

CFStringRef clientName;
CFStringRef windowTitle;
CFStringRef actionButtonLabel;
CFStringRef cancelButtonLabel;
CFStringRef saveFileName;
CFStringRef message;

UInt32 preferenceKey;
CFArrayRef popupExtension;
WindowModality modality;
WindowRef parentWindow;
char reserved[16];

}
typedef struct NavDialogCreationOptions NavDialogCreationOptions;

Field Descriptions

optionsFlags One of the following constants of type NavDialogOptionFlags:
Constant Description
kNavDefaultNavDlogOptions Use default options. Sets the following bits:

kNavDontAddTranslateltems
kNavAllowStationery
kNavAllowPreviews
kNavAllowMultipleFiles

18-16

kNavNoTypePopup Don't show file type pop-up menu button.
kNavDontAutoTranslate Don't auto-translate files. (Application will translate.)
kNavDontAddTranslateltems Don't add translation options in Show pop-up menu.
kNavAllFilesinPopup Add All Documents menu item in file type pop-up.
kNavAllowStationery Allow stationery files.

kNavAllowPreviews Allow preview to show.

Version 1.0 Files and Navigation Services

location

clientName
windowTitle

actionButtonLabel

cancelButtonLabel

savedFileName

message

preferenceKey

popupExtension

modality

parentWindow

kNavAllowMultipleFiles Allow multiple items to be selected.

Allow invisible items to be shown.

kNavAllowInvisibleFiles

kNavDontResolveAliases Don't resolve aliases.

kNavSelectDefaultLocation
kNavSelectAllReadableltem
kNavSupportPackages

Make the default location the browser selection.

Make dialog select All Readable Documents on open.

Recognise file system packages.

kNavAllowOpenPackages
kNavDontAddRecents
kNavDontUseCustomFrame

Allow opening of packages.

Don't add chosen objects to Recents list.

Don't draw the custom area bevel frame.
Don't show the "Replace File?" alert on save conflict.

kNavDontConfirmReplacement

Location of the upper-left of the dialog (global coordinates). The dialog will appear
at the location at which it was last closed if the optionFlags field is assigned NULL or
this field is assigned (-1,-1).

Name of your application. This will appear in the dialog's title bar.
Overrides the default window title.

Title for the dialog’s OK push button. If a title is not assigned, the push button will
use the default title (Open or Save).

Title for the dialog’s Cancel push button. If a title is not assigned, the push button
will use the default title (Cancel).

Default file name for a saved file.

A string, which is displayed in the dialog, providing additional instructions to the
user. (For an example, see Fig 11).

A value that identifies the set of dialog preferences that should be used. Assign 0 if
you do not wish to provide a preference key.

A handle to one or more structures of type NavMenultemSpec used to add extra menu
items to an Open dialog's Show pop-up menu or a Save Location dialog's Format pop-
up menu.

The dialog's modality (relevant on Mac OS X only). Relevant Window Manager
constants are:

kWindowModalityNone
kWindowModalitySystemModal
kWindowModalityAppModal
kWindowModalityWindowModal

The dialog's parent window. (Relevant on Mac OS X only when the dialog is
window-modal.)

The function NavGetDefaultDialogCreationOptions may be called to initialise a structure of type
NavDialogCreationOptions with the default dialog options, which are as follows:

® Show and Format pop-up menu buttons are displayed in the Open and Save Location dialogs (Mac

0S 8/9).

¢ Files are auto-translated. (This implies that the application will not translate.)

* Translation options are not included in the Show pop-up menu in the Open dialog.

® The All Documents item is not included in the Show pop-up menu in the Open dialog.

¢ The Stationery Option... item is included in the Format pop-up menu in the Save Location dialog.

e Previews of selected files, when available, are displayed in the Open dialog.

e Selection of multiple files in the browser list/column browser in the Open dialog is allowed.

e Invisible files are nor displayed.

Files and Navigation Services

Version 1.0 18-17

e Aliases are not resolved.
e The default location in the browser list/column browser is not selected.

e The All Readable Documents is not made the default selection in the Show pop-up menu in the Open
dialog.

¢ File system packages are not displayed.

¢ File system packages cannot be opened and navigated.

¢ Chosen file objects are added to the Recents list.

* A border is drawn around the custom area.

® The default titles for the OK and Cancel buttons are used.

e No message is displayed in the dialog.

The Show Pop-up Menu

The types of files to be displayed in the browser list may be chosen from a list of available file types in the
Show pop-up menu in the Open dialog (see Fig 7). This list is built from information supplied by your
application in a structure of type NavTypeList (see below), a handle to which you pass in the inTypeList
parameter of NavCreateGetFileDialog.

‘ Choosing this item displays all files of types that can be opened by thendmtiheatibay negeediesatefl by the apdl

Choosing the first item in this section displays all native file types. Choosing the ot

- displays only those native files of a particular type. Native file types are those who

v pliFiles Documents | appear in the NavTypelList structure whose handle is passed in the call to the NavQr
iles Text Document & : X .

Files Picture Document (The NavTypelList structure has the same format as an 'open' resource.)

MiirkTima Playor dorumaont 6"

All Readable Documents W

wn

This section appear&NavieontAddTranslateltems bit is ctgzhiedsRléhe field of the
NavDialogCreationOptions structure.

All Documents N

Choosing this item displays all files regardless of whether they can be opened by the application or not. This
the kNavAllFilesInPopup bit in the optionsFlags field of the NavDialogCreationOptions structure.

FIG 7 - THE SHOW POP-UP MENU AND FILE TYPE OPTIONS (MAC OS 8,

The Show pop-up menu button will not appear in the Open dialog if you pass NULL in the inTypeList
parameter of the NavCreateGetFileDialog function or if you set the kNavNoTypePopup bit in the optionsFlags field
of the NavDialogCreationOptions structure passed in the call to NavCreateGetFileDialog.

If a handle to a NavTypelList structure is passed in the inTypeList parameter and the kNavNoTypePopup bit is set:

e All items in the browser will be deactivated except for the file types specified in the NavTypeList
structure whether they were created by the application or not.

¢ The Show pop-up menu button will not appear.

Native File Types Section

The first item in the native file types section of the Mac OS 8/9 Show pop-up menu defaults to All Known
Documents if you do not assign the name of your application to the clientName field of the
NavDialogCreationOptions structure passed in the dialogOptions parameter of the NavCreateGetFileDialog function.

The remaining items in the native file types section will default to <Application Name> Document unless
you provide kind strings to describe the file types included in your NavTypeList structure (see below). For
Mac OS 8/9, you can do this by including a kind resource (a resource of type 'kind') in your application's
resource fork. Fig 8 shows the structure of a compiled 'kind' resource and such a resource being created
using Resorcerer.?

> The kind strings from your application's 'kind' resource also appear in the Kind column in Finder window list views.

18-18 Version 1.0 Files and Navigation Services

RESORCERER 'kind' RESOURCE EDITING WINDOW COMPILED 'kind' RESOURCE BYTES

[1 =——Newkind 128 from MyApp.rsrc =—— =B P APPLICATION SIGNATURE 4
+ [¥] Application signature "Mydp’ = ﬁ REGION CODE 2
+ [¥] Region code for strings Australia=15
Filler U FILLER 2
+ Strings 3 KIND ARRAY COUNT 2
+ s Stringg H#]
+ . [™] File type Application narme="apnrn "’ FIRST FILE TYPE 4
+ | Custom kind string “Myapp”
P — = DR TTITE - e——
+ | [¥] File type Text="TEXT’ Le FIRST KIND STRING 41 TO 25!
. Eustng‘: !:ind ;;ring "My dpp Text Docurnent ™ ALIGNMENT BYTES
+ r-mgg z 2
M. . [] File type Picture="PICT" :"'
v | Custom kind string "My App Mioture Doourncnt] =
LAST FILE TYPE 4
il KDE
< LAST KIND STRING <1 TO 25
MNew | Edit I | Cancel :
ALIGNMENT BYTES

Note: The special file type 'apnm' has been included so that, whenever Navigation Services encounters a document
file type has not been included in the 'kind' resource, a kind string in the form "<application name> document" will |

FIG 8 - STRUCTURE OF A COMPILED 'kind' RESOURCE AND CREATING A 'kind' RESOURC

For Mac OS X, the 'kind' resource is ignored if you provide necessary information in your application's 'pist'
resource. The relevant keys are CFBundleDevelopmentRegion, CFBundleSignature, and CFBundleDocumentTypes.
'apnm' @s a CFBundleTypeOSTypes has same effect as in 'kind' resource.

The NavTypelist Structure

The NavTypelList structure, which defines the list of file types that your application is capable of opening, is
as follows:

struct NavTypelList
{

OSType componentSignature; // Your application signature.

short reserved;

short osTypeCount; // How many file types will be defined.
OSType osType[1]; // A list of file types your application can open.
b
typedef struct NavTypelList NavTypelist;
typedef NavTypelList *NavTypeListPtr;
typedef NavTypeListPtr *NavTypeListHandle;

You can create your file type list dynamically or you can use an 'open' resource. Fig 9 shows the structure
of a compiled 'open' resource and such a resource being created using Resorcerer.

Files and Navigation Services Version 1.0 18-19

RESORCERER 'open’' RESOURCE EDITING WINDOW
[| =— New open 128 from MyApp.rsrc = EHI & COMPILED 'open’ RESOURCE BYTES

— - APPLICATION SIGNATURE 4
+ [¥] Application signature “My#p’ =
Filler 0O E]—
File types should be isted in order ot decreasing prater FILLER 2
+ Supported file types 2 FILE TYPE COUNT 2
+ I Supp.:.r-ted file t}rpeg #1
+ [®] File type Text="TEXT' FIRST FILE TYPE 4
+ Suppnr‘ted file t}rpeg #2 . :
K File Lype Ficlure="FICT" -
i KD It 7

New | Cancel LAST FILE TYPE 4

FIG 9 - STRUCTURE OF A COMPILED 'open' RESOURCE AND CREATING AN 'open' RESOU

Creating and Displaying a Save Location Dialog

The Save Location dialog (see Fig 10) is created by a call to NavCreatePutFileDialog and displayed by a call to
NavDialogRun. You pass a universal procedure pointer to an application-defined event handling (callback)
function in the inEventProc parameter of NavCreatePutFileDialog.

As with NavCreateGetFileDialog, you pass a pointer to a NavDialogCreationOptions structure in the inOptions
parameter of NavCreatePutFileDialog. Other parameters allow you to specify file type and file creator.

18-20 Version 1.0 Files and Navigation Services

save:filess————| |If the user types an existingd

name in the Name: edit text A document called “PICT Document” already
[E‘jchapm demo carbo.. L] Em ﬁeld and C|iCkS the Save_bgtt exists. Are you sure you want to replace the
s . . ’ eaislinyg ducwiment wilh this vne?
o [l |2 the Replace Confirmation alert !
[& rries.rsre 1272701 is presented. -
MewlpenCloseSave.: Todaw
[PicT Document The Format pop-up menu button will not appear in the Save Location |Gatoe=i et lsbethe————
SynchroniseFiles.c kNavNoTypePopup bit in the optionsFlags field of the NavDialogCreatioRQptians, ahcture.
TEXT Dn t 291/ - .
2 — =l The New push button creates a new foldg [untitied folder |
Name: |PICT Document | [New(j |
[Cancel] H Create]|
Furmat [Files Plewure bucument W [+ When the user selects a folder, the defaullt push button
| _title toggles from Save to Open.
(_cancel] [__save H; When the user selects the Name edit text item, the default push butt:
< When no filename is displayed in the Name edit text item, the defaull

v Files Picture Document

Stationery Option... I

Stationery Option

The first item is defined by the file type and creator specified by your application in the
parameters of the NavCreatePutFileDialog function.

The Stationery Option item displays the Stationery Option dialog, which lets the user de
or a copy of a document should be saved as a document or as stationery.

Format this file as type:

@& Document P EXPANDED SAVE LOCATION DIALOG
© Stationery e e 80 [® PICT Document
-Cam:el -:I-
S =T Save As: |PICT Docurment I
T Where: | ¥ Documents I's E]
MINIMAL (COLLAPSED) SAVE LOCATION DIALOG s
86 c [} PICT Document | % Documents
| Documents
Save As: IPlCT Document I |2 Internet Downloads
) - = & Library
e Dccimtn ﬁ @ = Movies Y TEXT Document
L& Music
{ cancel % € Save) I Pictures
L& Public
-l Sites

If the user types an existing
name in the Save As: edjt text r
field and clicks the Save button, P

l the Replace Confirmation alertis

luntltled folder presented y New[cﬂder ' { Add to Favorites \
(cancal) EFreatad) The New Folder push button enables the user to create

"""""""""""""" . { cancel m
a new folder for saving a document. - :

New Folder

Name of new folder:

The Mac OS 8/9 Save Location dialog contains a Format pop-up menu button by default. The standard Mac OS X Save
Format pop-up menu button.

FIG 10 - THE SAVE LOCATION DIALOG BOX (PARTIAL) AND ASSOCIATED DIALOGS

Creating and Displaying a Choose a Folder Dialog

The Choose a Folder dialog (see Fig 11) is created by a call to NavCreateChooseFolderDialog and displayed by
a call to NavDialogRun. You pass a universal procedure pointer to an application-defined event handling
(callback) function in the inEventProc parameter of NavCreateChooseFolderDialog and a pointer to a
NavDialogCreationOptions structure in the inOptions parameter.

The other dialogs in the Choose family are created and displayed in a similar manner:

e The Choose a Volume dialog is created by a call to NavCreateChooseVolumeDialog.

e The Choose a File dialog is created by a call to NavCreateChooseFileDialog, and may be used when you
want the user to select a file for a purpose other than opening. The file could be, for example, a
preferences file or a dictionary file.

¢ The Choose a File Object dialog is created by a call to NavCreateChooseObjectDialog, and may be used
when you need the user to select an object that might be one of several different types.

Files and Navigation Services Version 1.0 18-21

The browser list (Mac OS 8/9) and column browser (Mac OSIKp siring is assigned to the message field of the
the Choose a Folder dialog displays only directories and volhlaeBialogCreationOptions structure, it is displaye

Choose h Folder
Please choose a folder.
% Choose a Folder
A From: | T Documents ?‘1
[= macintosh HD1 +] m -
— — B Deskiop + = Chimpanzees.ial
Date Modified i |..- B EiEaeiE Tl o
4 [:1 ARRDE AEFODST .U I17esuy — : Interner Quwnluads = Onanyutdns.Lxl
> m Adobe || ustrator 5/8/99 # Library 3 PICT Document
[+ (8] adahe Photalialive™ 2 0 1941400 2 e Y TEXT Ducurien
b 5, Adabe Type Utilities 8/12/99 (il Music b
b G aladdin Tuner™ 3.0 2946400 o SR x
> ‘ Aldus SuperPaint 2579400 % = ——— e - L
Pleass rhanse & faldar £ New Folder " [Add to Favorites
[New(3 || open || [cancel | [choose | Go to:
e

(" cancel) choose)

B

FIG 11 - CHOOSE A FOLDER DIALOG

Creating and Displaying Primary Alerts

Save Changes Alert

The Save Changes alert (see Fig 12) is created by a call to NavCreateAskSaveChangesDialog and displayed by a
call to NavDialogRun. You pass a universal procedure pointer to an application-defined event handling
(callback) function in the inEventProc parameter of NavCreateAskSaveChangesDialog and a pointer to a
NavDialogCreationOptions structure in the inOptions parameter.

& a PICT Dascument
Sawe changes before closing
(B0 S50 HEITIED SERE EDFIHES D EE FiIE_S 5 « Do prau e ri i nawe ks changes ‘pou mads =3 ik docarram
document “PICT Document™ before closing it? ; b FCT DciaTeT = L= 2 o
L
i W = W —
== it)
0 PICT Dacumend
Sawd changed before quitting
I PO DEMHD Sa7R EINEEs D i - Do yead wank io nase 1he changes pau mads =2 ke docamam
document “PICT Document” before quitting L OBCT DacunAl? e ==
this application?
i » 1 i %
= — S D

| o

FIG 12 - SAVE CHANGES ALERTS (CLOSING DOCUMENT AND QUITTING #

One of the following constants is passed in the inAction parameter of the NavCreateAskSaveChangesDialog
function:

kNavSaveChangesClosingDocument =1
kNavSaveChangesQuittingApplication = 2
kNavSaveChangesOther =0

Discard Changes Alert

To support the Revert command in your application's File menu, Navigation Services provides the Discard
Changes alert. The Discard Changes alert (see Fig 13) is created by a call to
NavCreateAskDiscardChangesDialog and displayed by a call to NavDialogRun. You pass a universal procedure
pointer to an application-defined event handling (callback) function in the inEventProc parameter of
NavCreateAskDiscardChangesDialog and a pointer to a NavDialogCreationOptions structure in the inOptions
parameter.

18-22 Version 1.0 Files and Navigation Services

@00 | WCT Documem

Discard changes

A i
A gl] you Wé::ﬂgtl] (TSR] RN D T /\ Do yrau wank o discard the charges you mads o the
OCUment™ s o et PICT Cuelumen ™

fCancal Y R

|~ o

FIG 13 - DISCARD CHANGES ALERT

=

Review Changes Alert — Mac OS X

On Mac OS X, when the user attempts to quit your application when there is more than one document with
unsaved changes open, your application should present a Review Changes alert (see Fig 14). No
Navigation Services creation function existed at the time of writing; accordingly, at the time of writing, it
was necessary to create, display, and handle this alert using StandardAlert or CreateStandardAlert.

Wiodi havie 3 Mylpp dad issinls with wnsased changes. Do vou
_.r'*‘ wasl 10 review These chasges before quitting?

F you don't review paur decumests, alf poae changss sill b leak.

* Discard Changes 4

FIG 14 - REVIEW UNSAVED ALERT

A click on the Discard Changes button should cause all windows to close (without saving changes) and the
application to close down. A click on the Cancel button should cancel the Quit command, keeping the
application running. A click on the Review Changes... button should cause each window with unsaved
changes to be sequentially presented to the user with a Save Changes alert presented.

Event Handling in the Primary Dialogs

Event-Handling Function

As previously stated, you pass a universal procedure pointer to an application-defined event handling
(callback) function in the inEventProc parameter of those functions which create the Navigation Services
primary dialogs. For an event handling function named myNavEventFunction, you would declare the function
as follows:
void myNavEventFunction(NavEventCallbackMessage callBackSelector,
NavCBRecPtr callBackParms,NavCallBackUserData callBackUD)

callBackSelector The type of event, as represented by an event message constant. Typical event
message constants and their meanings are as follows:

Constant Val Description
ue

kNavCBUserAction 12 The user has taken an action such as clicking on an Open or
Save button.

kNavCBEvent 0 An event has occurred. Receipt of this event type allows your
handler to update other windows, track controls, etc.

kNavCBTerminate 3 The dialog is about to be closed.

callBackParms A pointer to a NavCBRec structure, which contains data used by your application to

process the event:

Files and Navigation Services Version 1.0 18-23

callBackUD

struct NavCBRec
{
Uintl6 version;
NavDialogRef context;
WindowRef window;
Rect customRect;
Rect previewRect;
NavEventData eventData;
NavUserAction userAction;
char reserved[218];
b
typedef struct NavCBRec NavCBRec;
typedef NavCBRec *NavCBRecPtr;

A pointer to a value passed in the inClientData parameter of the dialog creation
functions.

kNavCBUserAction Message Received

When the kNavCBUserAction message is received, your application typically calls NavDialogGetReply to obtain
the results of the dialog session, which are returned in a NavReplyRecord structure.

The NavReplyRecord Structure

struct NavReplyRecord

{
Uintl6 version;
Boolean validRecord;
Boolean replacing;
Boolean isStationery;
Boolean translationNeeded,;
AEDescList selection;
ScriptCode keyScript;
FileTranslationSpecArrayHandle fileTranslation;
Uint32 reservedl;
CFStringRef saveFileName;
char reserved[227];

b

typedef struct NavReplyRecord NavReplyRecord;

Field Descriptions

validRecord true if the user closed a dialog by clicking the Open button in an Open dialog, the
Save button in a Save Location dialog, or the Choose button in a Choose dialog, or by
pressing the Return or Enter key. If this field is false, the remaining fields do not
contain valid data.

replacing true if the user chooses to save a file by replacing an existing file.

isStationery true if the file about to be saved should be saved as a stationery document.

translationNeeded true if translation was or will be needed for selected files in Open and Save Location
dialogs.

selection An Apple event descriptor list (AEDescList) created from FSSpec or FSRef references to

selected items. You can determine the number of items in the list by calling
AECountitems. Each selected item is described in an AEDesc structure by the descriptor
type typeFSs or typeFSRef. This descriptor can be coerced into an FSSpec or FSRef
preparatory to, for example, opening the file.

keyScript Keyboard script system used for the filename.

fileTranslation Handle to a FileTranslationSpec structure, which contains a corresponding translation
array for each file reference returned in the selection field.

saveFileName The save file name in CFString form.

This field was introduced with Navigation Services 3.0 because there is no way to fit
a 255-character Unicode name into the name field of an FsSpec or into an FSRef. (See
selection field.)

18-24 Version 1.0 Files and Navigation Services

Note 1: On Mac OS 9, you will never get a file name that won't fit into the name
field of an FsSpec structure.

Note 2: On Mac OS X, you cannot reliably convert the name in the saveFileName
field to a 31-byte Pascal string.

When your application has finished using this structure, it should dispose of it by calling the function
NavDisposeReply.

Responding to User Actions

If the validrecord field of the NavReplyRecord structure contains true, your application typically calls
NavDialogGetUserAction to determine the user action, as represented by user action constants. Typical user
action constants are as follows:

Constant Valu Description
e

kUserActionCancel The user clicked the Cancel button.

kUserActionOpen The user clicked the Open button in an Open dialog.

kUserActionSaveAs The user clicked the Save button in a Save Location dialog.

AW N| =

kUserActionChoose The user clicked the Choose button in a Choose dialog

As an alternative to calling NavDialogGetUserAction, you can extract the user action from the userAction field of
the NavCBRec structure.

After determining the user action, your event handling function should take the appropriate action. For
example, if the Open button was clicked, your event handling function should proceed to open the file, or
files, selected by the user in the Open dialog.

Note that you should always call the function NavCompleteSave to complete any save operation. Amongst
other things, NavCompleteSave performs any needed translation.

kNavCBTerminate Message Received

When the kNavCBTerminate message is received, your event handler should call NavDialogDispose to dispose
of the dialog reference.

Event Handling in Primary Alerts

Your event handling function for the primary alerts should be declared in the same way as that for the
event handling function for the primary dialogs.

When the kNavCBUserAction message is received, your application should call NavDialogGetUserAction to
determine the user action, and then take the appropriate action. The user action constants relevant to the
primary alerts are as follows:

Constant Valu Description
e

kUserActionCancel The user clicked the Cancel button.

kUserActionSaveChanges The user clicked the Save button in a Save Changes alert.

The user clicked the Don't Save button in a Save Changes alert.
The user clicked the OK button in a Discard Changes alert.

kUserActionDontSaveChanges

0| N|O|

kUserActionDiscardChanges

When the appropriate action has been taken, your event handler should call NavDialogDispose to dispose of
the dialog reference.

Files and Navigation Services Version 1.0 18-25

Other Application-Defined (Callback) Functions

Application-Defined Object Filtering

If your application needs simple, straightforward object filtering, and as previously described, you simply
pass a pointer to a structure of type NavTypelList to the relevant Navigation Services function
(NavCreateGetFileDialog Or NavCreateChooseFileDialog). If you desire more specific filtering, you can provide an
application-defined filter (callback) function. Filter functions give you more control over what can and
cannot be displayed. You can pass a universal procedure pointer to your filter function in calls to the
functions NavCreateGetFileDialog, NavCreateChooseFileDialog, NavCreateChooseFolderDialog,
NavCreateChooseVolumeDialog, and NavCreateChooseObjectDialog.

You can use both a NavTypeList structure and a filter function for the Open and Choose a File dialogs if you
wish, but be aware that your filter function is directly affected by the NavTypelList structure. For example, if
the NavTypelList structure contains only 'TEXT' and 'PICT' types, only 'TEXT' and 'PICT' files will be passed into
your filter function.

Your filter function should return true if an object is to be displayed. The following is an example of a
filter function that allows only text files to be displayed:

Boolean myNavFilterCallback(AEDesc *theltem, void *info,void *callBackUD,
NavFilterModes filterMode)
{

OSErr theErr = noErr;
Boolean display = true;
NavFileOrFolderinfo *thelnfo;

thelnfo = (NavFileOrFolderinfo *) info;
if(theltem->descriptorType == typeFSS)
if('thelnfo->isFolder)
if(thelnfo->fileAndFolder.fileInfo.finderinfo.fdType != 'TEXT')
display = false;

return display;

}

Application-Defined (Callback)
Previews

To override how previews are drawn and handled, you can create a preview function and pass a universal
procedure pointer to it in the inpreviewProc parameter of the Navigation Services functions
NavCreateGetFileDialog, NavCreateChooseFileDialog and NavCreateChooseObjectDialog:

Boolean myPreviewProc(NavCBRecPtr callBackParms,void *callBackUD);

callBackParms A pointer to a NavCBRec structure that contains event data needed for your function to draw
the preview.

callBackUD A value set by your application.

Return: true if your preview function successfully draws the file preview. If your preview function returns
false, Navigation Services will display the preview if the file contains a valid 'pnot' resource.

18-26 Version 1.0 Files and Navigation Services

Main File Manager Constants, Data Types and Functions

Constants

Read/Write Permission

fsCurPerm =0
fsRdPerm =1
fsWrPerm =2

fsRdWrPerm =3
fsRAWrShPerm = 4

File Mark Positioning Modes

fsAtMark =0
fsFromStart =1
fsFromLEOF =2
fsFromMark =3
rdVerify =64

Data Types

File System Specification Structure
struct FSSpec

{
short vRefNum; // Volume reference number.
long parlD; // Directory ID of parent directory.
Str63 name; // Filename or directory name.
b

typedef struct FSSpec FSSpec;
typedef FSSpec *FSSpecPtr, **FSSpecHandle;

File System Reference
struct FSRef

UInt8 hidden[80];
}

File Information Structure

struct Finfo

OSType fdType; // File type.
OSType fdCreator; // File's creator.
unsigned short fdFlags; // Finder flags (fHasBundle, fInvisible, etc).
Point fdLocation; // Position of top-left corner of file's icon.
short fdFldr; // Folder containing file.

I3

typedef struct FInfo FInfo;

Functions

Reading, Writing and Closing Files

OSErr FSClose(short refNum);
OSErr FSRead(short refNum,long *count,void *buffPtr);
OSErr FSWrite(short refNum,long *count,const void *buffPtr);

Manipulating the File Mark

OSErr GetFPos(short refNum,long *filePos);
OSErr SetFPos(short refNum,short posMode,long posOff);

Manipulating the End-Of-File

OSErr GetEOF(short refNum,long *logEOF);
OSErr SetEOF(short refNum,long logEOF);

Opening and Creating Files

OSErr FSpOpenDF(const FSSpec *spec,SInt8 permission,short *refNum);
OSErr FSpOpenRF(const FSSpec *spec,SInt8 permission,short *refNum);

OSErr FSpCreate(const FSSpec *spec,0SType creator,0SType fileType,ScriptCode scriptTag);
OSErr FSCreateFileUnicode(const FSRef *parentRef,UniCharCount namelLength,const UniChar *name,

FSCataloglnfoBitmap whichinfo,const FSCataloginfo *cataloginfo,FSRef *newRef,

Files and Navigation Services

Version 1.0

18-27

FSSpec *newSpec);
Deleting Files and Directories

OSErr FSpDelete(const FSSpec *spec);
OSErr FSDeleteObject(const FSRef *ref);

Exchanging Data in Two Files

OSErr FSpExchangeFiles(const FSSpec *source,const FSSpec *dest);
OSErr FSExchangeObjects(const FSRef *ref,const FSRef *destRef);

Creating File System Specifications and File System References

OSErr FSMakeFSSpec(short vRefNum,long dirlD,ConstStr255Param fileName,FSSpec *spec);

OSErr FSpMakeFSRef(const FSSpec *source,FSRef *newRef);

OSErr FSMakeFSRefUnicode(const FSRef *parentRef,UniCharCount namelLength,const UniChar *name,
TextEncoding textEncodingHint,FSRef *newRef)

Obtaining Volume Information

OSErr GetVinfo(short drvNum,StringPtr volName,short *vRefNum,long *freeBytes);
OSErr GetVRefNum(short fileRefNum,short *vRefNum);

Getting and Setting Finder Information

OSErr FSpGetFinfo(FSSpec *spec,Finfo *fndrinfo);
OSErr FSpSetFinfo(const FSSpec *spec,const Finfo *fndrinfo);

Relevant Resource Manager Functions

Creating and Opening Resource Files

void FSpCreateResFile(const FSSpec *spec,0SType creator,0SType fileType,
ScriptCode scriptTag);
short FSpOpenResFile(const FSSpec *spec,SignedByte permission);

Relevant Finder Interface Functions

Find a Specified Folder

OSErr FindFolder(short vRefNum,OSType folderType,Boolean createFolder,
short *foundVRefNum,long *foundDirID)

Main Navigation Services Constants, Data Types, and
Functions

Constants

Dialog Option Flags

kNavDefaultNavDlogOptions = 0x000000E4

kNavNoTypePopup = 0x00000001
kNavDontAutoTranslate = 0x00000002
kNavDontAddTranslateltems = 0x00000004
kNavAllFilesInPopup = 0x00000010
kNavAllowStationery = 0x00000020
kNavAllowPreviews = 0x00000040

kNavAllowMultipleFiles = 0x00000080
kNavAllowlInvisibleFiles = 0x00000100
kNavDontResolveAliases = 0x00000200
kNavSelectDefaultLocation = 0x00000400
kNavSelectAllReadableltem = 0x00000800

kNavSupportPackages = 0x00001000
kNavAllowOpenPackages = 0x00002000
kNavDontAddRecents = 0x00004000

kNavDontUseCustomFrame = 0x00008000
kNavDontConfirmReplacement = 0x00010000

Event Messages

kNavCBEvent =0
kNavCBCustomize =1
kNavCBStart =2
kNavCBTerminate =3

18-28 Version 1.0 Files and Navigation Services

kNavCBAdjustRect =4
kNavCBNewLocation =
kNavCBShowDesktop =6
kNavCBSelectEntry =7
kNavCBPopupMenuSelect = 8
kNavCBAccept =9
kNavCBCancel =10
kNavCBAdjustPreview =11
kNavCBUserAction =12
kNavCBOpenSelection = (long) 0x80000000

User Action

kNavUserActionNone
kNavUserActionCancel
kNavUserActionOpen
kNavUserActionSaveAs
kNavUserActionChoose
kNavUserActionNewFolder 5
kNavUserActionSaveChanges =6
kNavUserActionDontSaveChanges = 7
kNavUserActionDiscardChanges = 8

Save Changes Action

g
Il pwNRO

kNavSaveChangesClosingDocument =1
kNavSaveChangesQuittingApplication = 2
Data Types

typedef struct __NavDialog *NavDialogRef;

typedef UInt32 NavDialogOptionFlags;
typedef SInt32 NavEventCallbackMessage;
typedef void *NavCallBackUserData;
typedef UInt32 NavUserAction;

typedef UInt32 NavAskSaveChangesAction;

NavDialogCreationOptions

struct NavDialogCreationOptions

{
Uintl6 version;
NavDialogOptionFlags optionFlags;
Point location;
CFStringRef clientName;
CFStringRef windowTitle;
CFStringRef actionButtonLabel;
CFStringRef cancelButtonlLabel;
CFStringRef saveFileName;
CFStringRef message;
UInt32 preferenceKey;
CFArrayRef popupExtension;
WindowModality modality;
WindowRef parentWindow;
char reserved[16];

b

typedef struct NavDialogCreationOptions NavDialogCreationOptions;

NavTypelist

struct NavTypelList

{

OSType componentSignature;
short reserved;

short osTypeCount;

OSType osType[l];

I3
typedef struct NavTypeList NavTypelList;
typedef NavTypelList *NavTypeListPtr;
typedef NavTypeListPtr *NavTypeListHandle;

NavCBRec

struct NavCBRec

Uintl6 version;
NavDialogRef context;
WindowRef window;
Rect customRect;
Rect previewRect;
NavEventData eventData;

Files and Navigation Services Version 1.0 18-29

NavUserAction userAction;

char reserved[218];
IS
typedef struct NavCBRec NavCBRec;
typedef NavCBRec *NavCBRecPtr;

NavReplyRecord

struct NavReplyRecord

Uintle6 version;
Boolean validRecord;
Boolean replacing;
Boolean isStationery;
Boolean translationNeeded;
AEDescList selection;
ScriptCode keyScript;
FileTranslationSpecArrayHandle fileTranslation;
UInt32 reservedl;
CFStringRef saveFileName;
char reserved[227];
+
typedef struct NavReplyRecord NavReplyRecord;
Functions

Initialising the NavDialogCreationOptions Structure
OSStatus NavGetDefaultDialogCreationOptions(NavDialogCreationOptions *outOptions);

Creating and Disposing Of Navigation Services Dialogs

OSStatus NavCreateGetFileDialog(const NavDialogCreationOptions *inOptions,
NavTypeListHandle inTypeList,NavEventUPP inEventProc,NavPreviewUPP inPreviewProc,
NavObjectFilterUPP inFilterProc,void *inClientData,NavDialogRef *outDialog);

OSStatus NavCreatePutFileDialog(const NavDialogCreationOptions *inOptions,

OSType inFileType,OSType inFileCreator,NavEventUPP inEventProc,
void *inClientData,NavDialogRef *outDialog);

OSStatus NavCreateAskSaveChangesDialog(const NavDialogCreationOptions *inOptions,
NavAskSaveChangesAction inAction,NavEventUPP inEventProc,void *inClientData,
NavDialogRef *outDialog);

OSStatus NavCreateAskDiscardChangesDialog(const NavDialogCreationOptions *inOptions,
NavEventUPP inEventProc,void *inClientData,NavDialogRef *outDialog);

OSStatus NavCreateChooseFileDialog(const NavDialogCreationOptions *inOptions,
NavTypeListHandle inTypelList,NavEventUPP inEventProc,NavPreviewUPP inPreviewProc,
NavObjectFilterUPP inFilterProc,void *inClientData,NavDialogRef *outDialog);

OSStatus NavCreateChooseVolumeDialog(const NavDialogCreationOptions *inOptions,
NavEventUPP inEventProc,NavObjectFilterUPP inFilterProc,void *inClientData,
NavDialogRef *outDialog);

OSStatus NavCreateChooseObjectDialog(const NavDialogCreationOptions *inOptions,
NavEventUPP inEventProc,NavPreviewUPP inPreviewProc,

NavObjectFilterUPP inFilterProc,void *inClientData,NavDialogRef *outDialog);
void NavDialogDispose(NavDialogRef inDialog);

Displaying and Running a Navigation Services Dialog
OSStatus NavDialogRun(NavDialogRef inDialog);
Filling In and Disposing Of NavReplyRecord Structures

OSStatus NavDialogGetReply(NavDialogRef inDialog,NavReplyRecord *outReply);
OSErr NavDisposeReply(NavReplyRecord *reply);

Getting the User Action

NavUserAction NavDialogGetUserAction(NavDialogRef inDialog);
Getting and Setting the Save File Name

CFStringRef NavDialogGetSaveFileName(NavDialogRef inPutFileDialog);
OSStatus NavDialogSetSaveFileName(NavDialogRef inPutFileDialog,CFStringRef inFileName);

Completing a Save Operation

OSErr NavCompleteSave(NavReplyRecord *reply,NavTranslationOptions howToTranslate);

Getting the Window In Which a Navigation Services Dialog Appears

WindowRef NavDialogGetWindow(NavDialogRef inDialog);
Creating New Folders

OSStatus NavCreateNewFolderDialog(const NavDialogCreationOptions *inOptions,

18-30 Version 1.0 Files and Navigation Services

NavEventUPP inEventProc,void *inClientData,NavDialogRef *outDialog);

Creating Previews

OSErr NavCreatePreview(AEDesc *theObject,OSType previewDataType,
const void *previewData,Size previewDataSize);

Creating and Disposing of Universal Procedure Pointers

NavEventUPP NewNavEventUPP(NavEventProcPtr userRoutine);
NavPreviewUPP NewNavPreviewUPP(NavPreviewProcPtr userRoutine);
NavObjectFilterUPP NewNavObjectFilterUPP(NavObjectFilterProcPtr userRoutine);

void DisposeNavEventUPP(NavEventUPP userUPP);
void DisposeNavPreviewUPP(NavPreviewUPP userUPP);
void DisposeNavObjectFilterUPP(NavObjectFilterUPP userUPP);

Application-Defined (Callback) Functions - Event Handling, Previews,
and Filters

void myNavEventFunction(NavEventCallbackMessage callBackSelector,
NavCBRecPtr callBackParms,void *callBackUD);

Boolean myNavPreviewFunction(NavCBRecPtr callBackParms,void *callBackUD);

Boolean myNavObjectFilterFunction(AEDesc *theltem,void *info,void *callBackUD,

NavFilterModes filterMode);

Files and Navigation Services Version 1.0 18-31

Demonstration Program Files Listing

[] FRRRRRRR R R R R Rk R R R ok
// Files.h CARBON EVENT MODEL

//***
1

// This program demonstrates:

1

// » File operations associated with:

// * The user invoking the Open..., Close, Save, Save As..., Revert, and Quit commands of a
/I typical application.

/I * Handling of the required Apple events Open Application, Re-open Application, Open
// Documents, Print Documents, and Quit Application.

/I » File synchronisation.

1

// * The creation, display, and handling of Open, Save Location, Choose a Folder, Save

// Changes, Discard Changes, and Review Unsaved dialogs and alerts using the new model
/l introduced with Navigation Services 3.0.

1

// To keep the code not specifically related to files and file-handling to a minimum, an item

// is included in the Demonstration menu which allows the user to simulate "touching" a window
// (that is, modifying the contents of the associated document). Choosing the first menu item
// in this menu sets the window-touched flag in the window's document structure to true and
// draws the text "WINDOW TOUCHED" in the window in a large font size, this latter so that the
// user can keep track of which windows have been "touched".

1

// This program is also, in part, an extension of the demonstration program Windows2 in that
// it also demonstrates certain file-related Window Manager features introduced with the Mac
// OS 8.5 Window Manager. These features are:

1

/I * Window proxy icons.

1

// * Window path pop-up menus.

1

// Those sections of the source code relating to these features are identified with ///// at

// the right of each line.

1

// The program utilises the following resources:

1

// « A 'plst' resource containing an information property list which provides information

// to the Mac OS X Finder.

1

// * An 'MBAR' resource, and 'MENU' and 'xmnu' resources for Apple, File, Edit and

// Demonstration menus (preload, non-purgeable).

1

// * A'STR ' resource containing the "missing application name" string, which is copied to

/I all document files created by the program.

1

// » 'STR#' resources (purgeable) containing error strings, the application's name (for

// certain Navigation Services functions), and a message string for the Choose a Folder

/I dialog.

1

// * An 'open' resource (purgeable) containing the file type list for the Open dialog.
1

// * A'kind' resource (purgeable) describing file types, which is used by Navigation

/l Services to build the native file types section of the Show pop-up menu in the Open
// dialog.

1

// *+ Two 'pnot' resources (purgeable) which, together with an associated 'PICT' resource
// (purgeable) and a 'TEXT' resource created by the program, provide the previews for
// the PICT and, on Mac OS 8/9, TEXT files.

1

// * The 'BNDL' resource (non-purgeable), 'FREF' resources (non-purgeable), signature
// resource (non-purgeable), and icon family resources (purgeable), required to support the
/I built application on Mac OS 8/9.

1

/I * A'SIZE' resource with the acceptSuspendResumeEvents, canBackground,

/I doesActivateOnFGSwitch, and isHighLevelEventAware flags set.

1

//***

18-32 Version 1.0 Files and Navigation Services

#include <Carbon.h>

/1

.. defines
#define rMenubar 128

#define mAppleApplication 128

#define Apple_About ‘abou’

#define mFile 129

#define File_New 'new '

#define File_Open ‘open’

#define File_Close ‘clos'

#define File_Save 'save'

#define File_SaveAs 'sava’

#define File_Revert ‘reve’

#define File_Quit 'quit’

#define iQuit 12

#define mDemonstration 131

#define Demo_TouchWindow 'touc’
#define Demo_ChooseAFolderDialog 'choo'
#define rErrorStrings 128

#define elnstallHandler 1000

#define eMaxWindows 1001

#define eCantFindFinderProcess 1002 "
#define rMiscStrings 129

#define sApplicationName 1

#define sChooseAFolder 2

#define rOpenResource 128

#define kMaxWindows 10

#define kFileCreator 'Kjbb'

#define kFileTypeTEXT '"TEXT'

#define kFileTypePICT 'PICT'

#define kOpen 0

#define kPrint 1

#define MIN(a,b) ((@) < (b) ? (a) : (b))
/!

... typedefs

typedef struct

TEHandle editStrucHdl;

PicHandle pictureHdl;

SIntl6 fileRefNum;

FSSpec fileFSSpec;

AliasHandle aliasHdlI;

Boolean windowTouched;

NavDialogRef modalToWindowNavDialogRef;

NavEventUPP askSaveDiscardEventFunctionUPP;

Boolean isAskSaveChangesDialog;

} docStructure, *docStructurePointer, *docStructureHandle;

/!

........................ function prototypes

void main (void);

void eventLoop (void);

void doPreliminaries (void);

void dolnstallAEHandlers (void);

OSStatus appEventHandler (EventHandlerCallRef,EventRef,void *);
OSStatus windowEventHandler (EventHandlerCallRef,EventRef,void *);
void doldle (void);

void doDrawContent (WindowRef);

void doMenuChoice (MenuCommand);

void doAdjustMenus (void);

void doErrorAlert (SIntl6);

void doCopyPString (Str255,5tr255);

void doConcatPStrings (Str255,Str255);

void doTouchWindow (void);

OSErr openAppEventHandler (AppleEvent *,AppleEvent *,SInt32);

OSErr reopenAppEventHandler (AppleEvent *,AppleEvent *,SInt32);
OSErr openAndPrintDocsEventHandler (AppleEvent *,AppleEvent *,SInt32);

OSErr quitAppEventHandler (AppleEvent *,AppleEvent *,SInt32);
OSErr doHasGotRequiredParams (AppleEvent *);
SIntl6 doReviewChangesAlert (SIntl6);

Files and Navigation Services Version 1.0 18-33

OSErr doNewCommand (void);

OSErr doOpenCommand (void);

OSErr doCloseCommand (NavAskSaveChangesAction);
OSErr doSaveCommand (void);

OSErr doSaveAsCommand (void);

OSErr doRevertCommand (void);

OSErr doNewDocWindow (Boolean,0OSType,WindowRef *);
EventHandlerUPP doGetHandlerUPP (void);

OSErr doCloseDocWindow (WindowRef);

OSErr doOpenfFile (FSSpec,0SType);

OSErr doReadTextFile (WindowRef);

OSErr doReadPictFile (WindowRef);

OSErr doCreateAskSaveChangesDialog (WindowRef,docStructureHandle,NavAskSaveChangesAction);
OSErr doSaveUsingFSSpec (WindowRef,NavReplyRecord *);
OSErr doSaveUsingFSRef (WindowRef,NavReplyRecord *);
OSErr doWriteFile (WindowRef);

OSErr doWriteTextData (WindowRef,SInt16);

OSErr doWritePictData (WindowRef,SInt16);

void getFilePutFileEventFunction (NavEventCallbackMessage,NavCBRecPtr,NavCallBackUserData);
void askSaveDiscardEventFunction (NavEventCallbackMessage,NavCBRecPtr,NavCallBackUserData);

OSErr doCopyResources (WindowRef);
OSErr doCopyAResource (ResType,SInt16,SInt16,SInt16);
void doSynchroniseFiles (void);

OSErr doChooseAFolderDialog (void);

// Skokkskokokkskokokkskokoskkskokskkskokkkkokkkkok sk kokok sk kokosk sk kokosk sk kokok sk kokok sk kokskskkok sk kokoskkkkok sk kkosk sk kokosk sk kokok sk kokk sk kokk sk kokkkkok

// Files.c

] FHRHFFAAFAAAAAAAAFAAAAAAKFAAAAAAAAFAAAKFAAFAAAAAFAAFAAAKFAAFAAFAAFAAAFAAFAAAAAAAAAFAAAAAAAAFAAK

Boolean gRunningOnX = false;

SIntl6 gAppResFileRefNum;

NavEventUPP gGetFilePutFileEventFunctionUPP ;
Boolean gQuittingApplication = false;

extern SIntl6 gCurrentNumberOfWindows;
extern Rect gDestRect,gViewRect;

J] FHRRFEAFAAAFAAAAAAAAAAAAFAAFAAAAAAAAFAAAFAAFAAAAAAAAFAAAFAAFAAAAAFAAFAAAFAAFAAAAAFARFHK 1511

void main(void)

MenuBarHandle menubarHdl;
SInt32 response;
MenuRef menuRef;
EventTypeSpec applicationEvents[] = { { kEventClassApplication, kEventAppActivated 1},
{ kEventClassCommand, kEventProcessCommand },
{ kEventClassMenu, kEventMenuEnableltems } };
EventLoopTimerRef timerRef;

set up menu bar and menus

menubarHdl = GetNewMBar(rMenubar);

18-34 Version 1.0 Files and Navigation Services

if(menubarHdl == NULL)
doErrorAlert(MemError());

SetMenuBar(menubarHdl);

DrawMenuBar();

Gestalt(gestaltMenuMgrAttr,&response);
if(response & gestaltMenuMgrAqualayoutMask)

menuRef = GetMenuRef(mFile);
if(menuRef !'= NULL)

DeleteMenultem(menuRef,iQuit);
DeleteMenultem(menuRef,iQuit - 1);

}

gRunningONnX = true;
}

else

{

menuRef = GetMenuRef(mFile);
if(menuRef !'= NULL)
SetMenultemCommandID(menuRef,iQuit,kHICommandQuit);
}

PP install required Apple
event handlers

dolnstallAEHandlers();

N install
application event handler

InstallApplicationEventHandler(NewEventHandlerUPP((EventHandlerProcPtr) appEventHandler),
GetEventTypeCount(applicationEvents),applicationEvents,
0,NULL);

7 install a timer (for file
synchronisation)

InstallEventLoopTimer(GetCurrentEventLoop(),0,TicksToEventTime(15),
NewEventLoopTimerUPP((EventLoopTimerProcPtr) doldle),NULL,
&timerRef);

[/ get universal procedure pointer to main Navigation Services services event function

gGetFilePutFileEventFunctionUPP =
NewNavEventUPP((NavEventProcPtr) getFilePutFileEventFunction);

L/ T PP PPPPUPRPPRN
run application event loop

RunApplicationEventLoop();
}

// Forrkkokokskokokokokokorokkokokokskokololokokorrkokokokskokokolokokokokkokokokskokokolokokorokkkokokskokokolokokokokkkokkokkokokokkk doPreliminaries

void doPreliminaries(void)

{
MoreMasterPointers(448);

InitCursor();

}
// Skskeskokskskeskok sk sk skoskok sk skoskosk sk ko skok sk ko skok sk ko skok sk sk skok sk sk skok sk sk sk sk sk sksk sk sk skskskosk skskosk sk skkoskosk skkoskok sk koskosk sk sk kok sk d0| nStaIIAEHandlerS
void dolnstallAEHandlers(void)
OSErr osError;
osError = AEInstallEventHandler(kCoreEventClass,kAEOpenApplication,
NewAEEventHandlerUPP((AEEventHandlerProcPtr) openAppEventHandler),
OL,false);
if(osError '= noErr) doErrorAlert(elnstallHandler);
osError = AEInstallEventHandler(kCoreEventClass, kAEReopenApplication,
NewAEEventHandlerUPP((AEEventHandlerProcPtr) reopenAppEventHandler),
OL,false);
if(osError '= noErr) doErrorAlert(elnstallHandler);

osError = AEInstallEventHandler(kCoreEventClass, kAEOpenDocuments,

Files and Navigation Services Version 1.0 18-35

NewAEEventHandlerUPP((AEEventHandlerProcPtr) openAndPrintDocsEventHandler),
kOpen,false);
if(osError '= noErr) doErrorAlert(elnstallHandler);

osError = AEInstallEventHandler(kCoreEventClass,kAEPrintDocuments,
NewAEEventHandlerUPP((AEEventHandlerProcPtr) openAndPrintDocsEventHandler),
kPrint,false);

if(osError '= noErr) doErrorAlert(elnstallHandler);

osError = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,
NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
OL,false);

if(osError !'= noErr) doErrorAlert(elnstallHandler);

}

[FRRRRRRRR Rtk gppEventHandler

OSStatus appEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
void * userData)
{

OSStatus result = eventNotHandledErr;
Uint32 eventClass;

Uint32 eventKind;

HICommand hiCommand;

MenulD menulD;

MenultemIndex menultem;

eventClass = GetEventClass(eventRef);
eventKind = GetEventKind(eventRef);

switch(eventClass)
{
case kEventClassApplication:
if(eventKind == kEventAppActivated)
SetThemeCursor(kThemeArrowCursor);
break;

case kEventClassCommand:
if(eventkKind == kEventProcessCommand)

GetEventParameter(eventRef,kEventParamDirectObject,typeHICommand,NULL,
sizeof(HICommand),NULL,&hiCommand);
menulD = GetMenulD(hiCommand.menu.menuRef);
menultem = hiCommand.menu.menultemindex;
if((hiCommand.commandID !'= kHICommandQuit) &&
(menulD >= mAppleApplication && menulD <= mDemonstration))

doMenuChoice(hiCommand.commandID);
result = noErr;
}
}

break;

case kEventClassMenu:
if(eventKind == kEventMenuEnableltems)

doAdjustMenus();
result = noErr;

}

break;

}

return result;

}

// orkklokokololololoiolollllokskokolololololorolollokskokolololoioloorllokskokololololoioloololskokskolololololoollkckskokk \windowEventHandler

OSStatus windowEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
void* userData)
{
OSStatus result = eventNotHandledErr;
UInt32 eventClass;
Ulnt32 eventKind;
WindowRef windowRef;

eventClass = GetEventClass(eventRef);
eventKind = GetEventKind(eventRef);

switch(eventClass)

18-36 Version 1.0 Files and Navigation Services

case kEventClassWindow:
GetEventParameter(eventRef,kEventParamDirectObject,typeWindowRef,NULL,sizeof(windowRef),
NULL,&windowRef);
switch(eventKind)
{
case kEventWindowDrawContent:

doDrawContent(windowRef);
result = nokErr;
break;

case kEventWindowClose:
if(gQuittingApplication)
doCloseCommand(kNavSaveChangesQuittingApplication);
else
doCloseCommand(kNavSaveChangesClosingDocument);
result = noErr;
break;

}

break;

}

return result;

}

// Foloollkokskokololololooololkokokokololololoioollolokskokoloioioioolloklokskolololoioiolorlolokolokololoioiolorlolokskokolololololorlkkkokkok gl dle

void doldle(void)
{
if(GetWindowKind(FrontWindow()) == kApplicationWindowKind)

doSynchroniseFiles();

}

// olorolkkokskokolololoioloolokkokskokololololoioololokokskokololoioiolorlokokskokolololoioloololokskokololoiololoolollolskokokokololololorkskokk g pdate

void doDrawContent(WindowRef windowRef)

{
docStructureHandle docStrucHdl;
GrafPtr oldPort;
Rect destRect;

docStrucHd| = (docStructureHandle) GetWRefCon(windowRef);

GetPort(&oldPort);
SetPortWindowPort(windowRef);

if((*docStrucHdl)->pictureHdl)
{

destRect = (*(*docStrucHdl)->pictureHdl)->picFrame;
OffsetRect(&destRect,170,54);

HLock((Handle) (*docStrucHdl)->pictureHdl);
DrawPicture((*docStrucHdl)->pictureHdl,&destRect);
HUnlock((Handle) (*docStrucHdl)->pictureHdl);

}
else if((*docStrucHdl)->editStrucHdl)
HLock((Handle) (*docStrucHdl)->editStrucHdl);

TEUpdate(&gDestRect,(*docStrucHdl)->editStrucHdl);
HUnlock((Handle) (*docStrucHdl)->editStrucHdl);

}

if((*docStrucHdl)->windowTouched)
TextSize(48);
MoveTo(30,170);
DrawString("\pWINDOW TOUCHED");

TextSize(12);
}

SetPort(oldPort);
}

[TRk doMenuChoice
void doMenuChoice(MenuCommand commandID)
OSErr osError = nokErr;

switch(commandID)

Files and Navigation Services Version 1.0

18-37

.. Apple/Application menu

case Apple_About:
SysBeep(10);
break;

case File_New:
if(osError = doNewCommand())
doErrorAlert(osError);
break;

case File_Open:
if(osError = doOpenCommand() && osError == opWrErr)
doErrorAlert(osError);
break;

case File_Close:
if(osError = doCloseCommand(kNavSaveChangesClosingDocument))
doErrorAlert(osError);
break;

case File_Save:
if(osError = doSaveCommandy())
doErrorAlert(osError);
break;

case File_SaveAs:
if(osError = doSaveAsCommand())
doErrorAlert(osError);
break;

case File_Revert:
if(osError = doRevertCommand())
doErrorAlert(osError);
break;

}

case Demo_TouchWindow:
doTouchWindow();
break;

case Demo_ChooseAFolderDialog:
if(osError = doChooseAFolderDialog())
doErrorAlert(osError);
break;

}

// Skokkskokokkskokokskskokskkskokkkskokkkokokkkokok sk kokosk sk kokosk sk kokskskkokkkkokkkokok sk kokosk sk kokok sk kokok sk kokkkkokkkkk >k >k dOAdeStMenUS

void doAdjustMenus(void)

{

OSErr osError;
MenuRef menuRef;
WindowRef windowRef;

docStructureHandle docStrucHdl;

if(gCurrentNumberOfWindows > 0)

{
if(gRunningONX)
{

if((osError = GetSheetWindowParent(FrontWindow(),&windowRef)) == noErr)

{
menuRef = GetMenuRef(mFile);
DisableMenuCommand(menuRef,File_Close);
DisableMenuCommand(menuRef,File_Save);
DisableMenuCommand(menuRef,File_SaveAs);
DisableMenuCommand(menuRef,File_Revert);
menuRef = GetMenuRef(mDemonstration);

18-38 Version 1.0

Files and Navigation Services

DisableMenuCommand(menuRef,Demo_TouchWindow);
return;
}
else
windowRef = FrontWindow();
¥

else
windowRef = FrontWindow();

if(GetWindowKind(windowRef) == kApplicationWindowKind)
docStrucHd| = (docStructureHandle) GetWRefCon(windowRef);

menuRef = GetMenuRef(mFile);
EnableMenuCommand(menuRef,File_Close);
if((**docStrucHd|)->windowTouched)
{
EnableMenuCommand(menuRef,File_Save);
EnableMenuCommand(menuRef,File_Revert);
}
else
{
DisableMenuCommand(menuRef,File_Save);
DisableMenuCommand(menuRef,File_Revert);

}

if(((*docStrucHdI)->pictureHdl !'= NULL) ||
((*(*docStrucHdIl)->editStrucHdl)->teLength > 0))
EnableMenuCommand(menuRef,File_SaveAs);
else
DisableMenuCommand(menuRef,File_SaveAs);

menuRef = GetMenuRef(mDemonstration);

if(((*docStrucHdI)->pictureHdl !'= NULL) ||
((*(*docStrucHdIl)->editStrucHdl)->teLength > 0))

if((*docStrucHdl)->windowTouched == false)
EnableMenuCommand(menuRef,Demo_TouchWindow);
else
DisableMenuCommand(menuRef,Demo_TouchWindow);
}
else
DisableMenuCommand(menuRef,Demo_TouchWindow);
}

}

else

{
menuRef = GetMenuRef(mFile);
DisableMenuCommand(menuRef,File_Close);
DisableMenuCommand(menuRef,File_Save);
DisableMenuCommand(menuRef,File_SaveAs);
DisableMenuCommand(menuRef,File_Revert);
menuRef = GetMenuRef(mDemonstration);
DisableMenuCommand(menuRef,Demo_TouchWindow);

}

DrawMenuBar();

}

[] FHRRRERRFE A RAF AR A AAAF A AR F S AR F AR KRR JoErrorAlert

void doErrorAlert(SIntl6 errorCode)

Str255 errorString, theString;
SIntl6 itemHit;

if(errorCode == elnstallHandler)
GetIndString(errorString,rErrorStrings,1);
else if(errorCode == eMaxWindows)
GetIndString(errorString,rErrorStrings, 2);
else if(errorCode == eCantFindFinderProcess)
GetIndString(errorString,rErrorStrings, 3);
else if(errorCode == opWrErr)
GetIndString(errorString,rErrorStrings,4);
else

GetIndString(errorString,rErrorStrings,5);
NumToString((SInt32) errorCode,theString);

Files and Navigation Services Version 1.0 18-39

doConcatPStrings(errorString,theString);
}

if(errorCode '= memFullErr)

{
StandardAlert(kAlertCautionAlert,errorString, NULL,NULL,&itemHit);
}

else

StandardAlert(kAlertStopAlert,errorString, NULL,NULL, &itemHit);
ExitToShell();
}
}

// Skekokeskokskokeskokskokskokskokskokskokkokskokkokkokskokskokskokkokkokkokskokskokskokskokskokkokskokskokskok ko skok ko kok ko kokkok kok ok kok dOCOpyPStrlng
void doCopyPString(Str255 sourceString,Str255 destinationString)

SInt16 stringLength;

stringLength = sourceString[0];

BlockMove(sourceString + 1,destinationString + 1,stringLength);

destinationString[0] = stringLength;
}

// orlklckskokokolololoiololllolokskokolololoiolorlkokskokolololoiolorolollokskokolololoioloorllkskokolokolololoorriokskokekokkokk oConcatPStri ngs

void doConcatPStrings(Str255 targetString,Str255 appendString)
{Slnt16 appendLength;
appendLength = MIN(appendString[0],255 - targetString[0]);
i{f(appendLength > 0)

BlockMoveData(appendString+1,targetString+targetString[0]+1,(SInt32) appendLength);
targetString[0] += appendLength;
}
}

[/ Rk doTouchWindow
void doTouchWindow(void)

WindowRef windowRef;
docStructureHandle docStrucHdl;

windowRef = FrontWindow();
docStrucHdIl = (docStructureHandle) GetWRefCon(windowRef);

SetPortWindowPort(windowRef);
TextSize(48);

MoveTo(30,170);
DrawString("\pWINDOW TOUCHED");
TextSize(12);
(*docStrucHdl)->windowTouched = true;

SetWindowModified(windowRef,true); 1111
}

// Skokskskokokkskokokkskokskkskokkskkokkkokoskkkoksk sk kokok sk kokskskkokk sk kok sk kkok sk kokosk sk kokosk sk koksk sk kokk sk kokkkkok OpenAppEventHandler

OSErr openAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefCon)
OSErr osError;
osError = doHasGotRequiredParams(appEvent);
if(osError == noErr)

osError = doNewCommand();

return osError;

}

] FRRRRRRRRR Rk RisioRisiosiiosiiosiosiookisopioRiolick regpenAppEventHandler

OSErr reopenAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,
SInt32 handlerRefCon)

18-40 Version 1.0 Files and Navigation Services

OSErr osError;

osError = doHasGotRequiredParams(appEvent);
if(osError == noErr)
if('FrontWindow())
osError = doNewCommand();

return osError;

}

] FRRRRRRRcRR Rkl gpenAndPrintDocsEventHandler

OSErr openAndPrintDocsEventHandler(AppleEvent *appEvent,AppleEvent *reply,
SInt32 handlerRefcon)

FSSpec fileSpec;

AEDescList docList;

OSErr osError, ignorekErr;
SInt32 index, numberOfltems;
Size actualSize;

AEKeyword keyWord;

DescType returnedType;

FInfo filelnfo;

osError = AEGetParamDesc(appEvent,keyDirectObject,typeAEList,&docList);

if(osError == noErr)

{
osError = doHasGotRequiredParams(appEvent);
if(osError == noErr)
{

osError = AECountltems(&docList,&numberOfltems);
if(osError == nokErr)

for(index=1;index<=numberOfltems;index++)

{
osError = AEGetNthPtr(&doclList,index,typeFSS,&keyWord,&returnedType,
&fileSpec,sizeof(fileSpec),&actualSize);

if(osError == noErr)

{
osError = FSpGetFInfo(&fileSpec,&filelnfo);
if(osError == noErr)
{

if(osError = doOpenFile(fileSpec,filelnfo.fdType))
doErrorAlert(osError);

if(osError == noErr && handlerRefcon == kPrint)
// Call printing function here

}
}

else
doErrorAlert(osError);
}
}
}

else
doErrorAlert(osError);

ignoreErr = AEDisposeDesc(&doclList);
}

else
doErrorAlert(osError);

return osError;

}

// skokokskskokoskskskokoskskokokskskokok sk skoksk sk kokosk sk kokosk sk kokosk sk skokoskskskokosk sk skok sk skskok sk skskok sk sk sk sk skskosk sk sk skosk sk koksk sk k q u ItAppEve ntHan d | er

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)

OSErr osError;

WindowRef windowRef, previousWindowRef;
docStructureHandle docStrucHdl;

SIntl6 touchedWindowsCount = 0;
EventRef eventRef;

EventTargetRef eventTargetRef;

Files and Navigation Services Version 1.0 18-41

SIntl6 itemHit;

osError = doHasGotRequiredParams(appEvent);

if(osError == noErr)
{
if(FrontWindow())
{
I, if any window has a sheet, bring to front, play system alert sound, and return

windowRef = GetFrontWindowOfClass(kSheetWindowClass,true);
if(windowRef)
{

SelectWindow(windowRef);

SysBeep(10);

return nokrr;

}

count touched windows

windowRef = FrontWindow();
do
{
docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
if((*docStrucHdl)->windowTouched == true)
touchedWindowsCount++;
previousWindowRef = windowRef;
} while(windowRef = GetNextWindowOfClass(previousWindowRef,kDocumentWindowClass,true));

PP if no touched windows, simply
close down

if(touchedWindowsCount == 0)
QuitApplicationEventLoop();

] e if touched windows are present, and if running on OS X

if(gRunningOnX)
{

/... if one touched window, cause Save Changes alert on that window, close all others
if(touchedWindowsCount == 1)

gQuittingApplication = true;

CreateEvent(NULL,kEventClassWindow,kEventWindowClose,0,kEventAttributeNone,
&eventRef);

eventTargetRef = GetWindowEventTarget(FrontWindow());

SendEventToEventTarget(eventRef,eventTargetRef);

/... if more than one touched window, create Review Changes alert, handle button clicks

else if(touchedWindowsCount > 1)

{

itemHit = doReviewChangesAlert(touchedWindowsCount);

if(itemHit == kAlertStdAlertOKButton)
{
gQuittingApplication = true;
CreateEvent(NULL,kEventClassWindow,kEventWindowClose,0,kEventAttributeNone,
&eventRef);
eventTargetRef = GetWindowEventTarget(FrontWindow());
SendEventToEventTarget(eventRef,eventTargetRef);

}

else if(itemHit == kAlertStdAlertCancelButton)
gQuittingApplication = false;

else if(itemHit == kAlertStdAlertOtherButton)
QuitApplicationEventLoop();

L if touched windows are present, and if running on OS 8/9

else

{
gQuittingApplication = true;
CreateEvent(NULL,kEventClassWindow,kEventWindowClose,0,kEventAttributeNone,

18-42 Version 1.0 Files and Navigation Services

&eventRef);
eventTargetRef = GetWindowEventTarget(FrontWindow());
SendEventToEventTarget(eventRef,eventTargetRef);
}
}

else
QuitApplicationEventLoop();

return osError;

}

] ook doHasGotRequiredParams

OSErr doHasGotRequiredParams(AppleEvent *appEvent)
{

DescType returnedType;

Size actualSize;

OSErr osError;

osError = AEGetAttributePtr(appEvent, keyMissedKeywordAttr,typeWildCard,&returnedType,
NULL,0,&actualSize);
if(osError == errAEDescNotFound)
osError = noErr;
else if(osError == nokErr)
osError = errAEParamMissed;

return osError;

}

// skokokskskokkokokokkokokokkokokokskokokokkokokokskkokkskkoskkskkoskkkoksk sk kokok sk kok sk sk kokkkkokkkkok sk kkskkkkk >k k dOReVieWChangeSAlert

SIntl6 doReviewChangesAlert(SIntl6 touchedWindowsCount)

AlertStdCFStringAlertParamRec paramRec;
Str255 messageTextl = "\pYou have ";
Str255 messageText2 = "\p Files documents with unsaved changes. ";
Str255 messageText3 = "\pDo you want to review these changes before quitting?";
Str255 countString;
CFStringRef messageText;
CFStringRef informativeText =
CFSTR("If you don't review your documents, all your changes will be lost.");
DialogRef dialogRef;
DialogltemIndex itemHit;

NumToString(touchedWindowsCount,countString);

doConcatPStrings(messageTextl,countString);

doConcatPStrings(messageTextl, messageText2);

doConcatPStrings(messageTextl, messageText3);

messageText = CFStringCreateWithPascalString(NULL,messageTextl,CFStringGetSystemEncoding());

GetStandardAlertDefaultParams(¶mRec,kStdCFStringAlertVersionOne);

paramRec.movable = true;
paramRec.defaultText = CFSTR("Review Changes...");
paramRec.cancelText = CFSTR("Cancel");

paramRec.otherText = CFSTR("Discard Changes");

CreateStandardAlert(kAlertStopAlert,messageText,informativeText,¶mRec,&dialogRef);
RunStandardAlert(dialogRef,NULL,&itemHit);

if(messageText !'= NULL)
CFRelease(messageText);

return itemHit;

}

/ kokokkskokkokokokkokokokkokokokkokokokskokokokskkokokskskokokskkokkskkskkkkok sk koksk sk koksk sk kokosk sk kokskskkok sk sk ko kkskok sk kokosk sk koksk sk koksk sk kokokkkok

// NewOpenCloseSave.c
[FHFFHRRFAAKRAAAKRRAAARARFAAKARFAAAKRFAAARAAAAARFAAAKARAAAARRAAAARFAAAARFAAAKRAAAARRAAAARFAAAAFAAARRFAAARRAAHOK

Files and Navigation Services Version 1.0 18-43

NavDialogRef gModalToApplicationNavDialogRef;
SIntl6 gCurrentNumberOfWindows = 0;

Rect gDestRect, gViewRect;

Boolean gCloseDocWindow = false;

extern NavEventUPP gGetFilePutFileEventFunctionUPP;
extern SIntl6 gAppResFileRefNum;

extern Boolean gQuittingApplication;

extern Boolean gRunningOnX;

]| Rk g gNewCommand
OSErr doNewCommand(void)

WindowRef windowRef;

OSErr osError;

OSType documentType = kFileTypeTEXT,;

osError = doNewDocWindow(true,documentType,&windowRef);

if(osError == nokErr)
SetWindowProxyCreatorAndType(windowRef,kFileCreator,documentType,kUserDomain); 1111

return osError;

}

] FRRRRRRoRRoR Rkt RisioRisiosisiosiiosiosioiooiolieliik doOpenCommand

OSErr doOpenCommand(void)

{
OSErr osError = noErr;
NavDialogCreationOptions dialogOptions;
Str255 applicationName;

NavTypeListHandle fileTypeListHdl = NULL;

PP create application-
modal Open dialog

osError = NavGetDefaultDialogCreationOptions(&dialogOptions);
if(osError == nokErr)

GetIndString(applicationName,rMiscStrings,sApplicationName);

dialogOptions.clientName = CFStringCreateWithPascalString(NULL,applicationName,
CFStringGetSystemEncoding());

dialogOptions.modality = kWindowModalityAppModal;

fileTypeListHdl = (NavTypeListHandle) GetResource('open',rOpenResource);

osError = NavCreateGetFileDialog(&dialogOptions,fileTypeListHdl,
gGetFilePutFileEventFunctionUPP,NULL,NULL,NULL,
&gModalToApplicationNavDialogRef);

if(osError == noErr && gModalToApplicationNavDialogRef != NULL)

{
osError = NavDialogRun(gModalToApplicationNavDialogRef);
if(osError '= noErr)

NavDialogDispose(gModalToApplicationNavDialogRef);
gModalToApplicationNavDialogRef = NULL;

}

if(dialogOptions.clientName !'= NULL)
CFRelease(dialogOptions.clientName);

if(fileTypeListHdl '= NULL)
ReleaseResource((Handle) fileTypeListHdl);
}

return osError;

}

// Forkkkokokokokolololookkkkokokokokokokolorookkskokokokokokokolorotokkskokokokokokokololorookskolokskokokokololororklokkokokokkokkk k- o CloseCommand

OSErr doCloseCommand(NavAskSaveChangesAction action)

WindowRef windowRef;
SIntl6 windowKind;
docStructureHandle docStrucHdl;
OSErr osError = nokErr;

18-44 Version 1.0 Files and Navigation Services

windowRef = FrontWindow();
windowKind = GetWindowKind(windowRef);

switch(windowKind)

case kApplicationWindowKind:
docStrucHd| = (docStructureHandle) GetWRefCon(windowRef);

e if window has unsaved changes, create Save Changes alert
if((*docStrucHdl)->windowTouched == true)

if(IsWindowCollapsed(windowRef))
CollapseWindow(windowRef,false);

osError = doCreateAskSaveChangesDialog(windowRef,docStrucHdl,action);

}

/2 otherwise close
file and clean up

else
osError = doCloseDocWindow(windowRef);
break;

case kDialogWindowKind:
// Hide or close modeless dialog, as required.
break;

}

return osError;

}

// orrkokskokkokololokokokkokokokskokookokokorkokokokokokokokolokokorokkokokokskokokolokokorkkokokokskokokololokorokkkokokokkokokokkkx k- o SgveCommand

OSErr doSaveCommand(void)

{
WindowRef windowRef;
docStructureHandle docStrucHdl;
OSErr osError = nokErr;
Rect portRect;

windowRef = FrontWindow();
docStrucHd| = (docStructureHandle) GetWRefCon(windowRef);

/A if the document has a file ref number, write the file, otherwise call doSaveAsCommand

if((*docStrucHdl)->fileRefNum)
{

osError = doWriteFile(windowRef);

SetPortWindowPort(windowRef);
GetWindowPortBounds(windowRef,&portRect);
EraseRect(&portRect);
InvalWindowRect(windowRef,&portRect);

}
else
osError = doSaveAsCommand();

if(osError == nokErr) 1
SetWindowModified(windowRef,false); 1

return osError;

}

// orrkokokokkokokolokokorkkokokokokokokolokokokororkokokokskokololokokokokkkokokskokokololokorokkkkokokskskolololorokorrkokkkkokk ok o SgveAsCommand

OSErr doSaveAsCommand(void)

{
OSErr osError = noErr;
NavDialogCreationOptions dialogOptions;
WindowRef windowRef;
Str255 windowTitle, applicationName;
docStructureHandle docStrucHdl;
OSType fileType;
] e et e e eeae e et e e et eae et eaeeae ettt et e et ettt e aa et aa e ar e create window-modal Save

Location dialog

Files and Navigation Services Version 1.0 18-45

osError = NavGetDefaultDialogCreationOptions(&dialogOptions);
if(osError == noErr)

dialogOptions.optionFlags |= kNavNoTypePopup;
windowRef = FrontWindow();

GetWTitle(windowRef,windowTitle);
dialogOptions.saveFileName = CFStringCreateWithPascalString(NULL,windowTitle,
CFStringGetSystemEncoding());

GetIndString(applicationName,rMiscStrings,sApplicationName);

dialogOptions.clientName = CFStringCreateWithPascalString(NULL,applicationName,
CFStringGetSystemEncoding());

dialogOptions.parentWindow = windowRef;

dialogOptions.modality = kWindowModalityWindowModal;

docStrucHdIl = (docStructureHandle) GetWRefCon(windowRef);
if((*docStrucHdl)->editStrucHdl '= NULL)

fileType = kFileTypeTEXT,;
else if((*docStrucHdl)->pictureHdl '= NULL)

fileType = kFileTypePICT;

HLock((Handle) docStrucHdl);

osError = NavCreatePutFileDialog(&dialogOptions,fileType,kFileCreator,
gGetFilePutFileEventFunctionUPP ,
windowRef,&(*docStrucHdl)->modalToWindowNavDialogRef);
HUnlock((Handle) docStrucHdl);

if(osError == noErr && (*docStrucHdl)->modalToWindowNavDialogRef != NULL)

osError = NavDialogRun((*docStrucHdl)->modalToWindowNavDialogRef);
if(osError !'= nokErr)

NavDialogDispose((*docStrucHdl)->modalToWindowNavDialogRef);
(*docStrucHdI)->modalToWindowNavDialogRef = NULL;
}
}

if(dialogOptions.saveFileName !'= NULL)
CFRelease(dialogOptions.saveFileName);

if(dialogOptions.clientName '= NULL)
CFRelease(dialogOptions.clientName);

}

return osError;

}

// orlklckskokololololoioololkolokskololololoiolorlllokokololololoiolorlllokskolololoioiolorlollkskololololoiolollllskokoloklokkok qoRevertCommand

OSErr doRevertCommand(void)

{
OSErr osError = noErr;
NavDialogCreationOptions dialogOptions;
WindowRef windowRef;
Str255 windowTitle;

docStructureHandle docStrucHdl;

] e et a e e e a et et r et eaeaeas create window-modal
Discard Changes alert

osError = NavGetDefaultDialogCreationOptions(&dialogOptions);
if(osError == noErr)

{

windowRef = FrontWindow();

GetWTitle(windowRef,windowTitle);

dialogOptions.saveFileName = CFStringCreateWithPascalString(NULL,windowTitle,
CFStringGetSystemEncoding());

dialogOptions.parentWindow = windowRef;

dialogOptions.modality = kWindowModalityWindowModal;

docStrucHdIl = (docStructureHandle) GetWRefCon(windowRef);
if((*docStrucHdl)->askSaveDiscardEventFunctionUPP !'= NULL)

{
DisposeNavEventUPP((*docStrucHdl)->askSaveDiscardEventFunctionUPP);

(*docStrucHdl)->askSaveDiscardEventFunctionUPP = NULL;
}

18-46 Version 1.0 Files and Navigation Services

(*docStrucHdl)->askSaveDiscardEventFunctionUPP =
NewNavEventUPP((NavEventProcPtr) askSaveDiscardEventFunction);

HLock((Handle) docStrucHdl);

osError = NavCreateAskDiscardChangesDialog(&dialogOptions,
(*docStrucHdl)->askSaveDiscardEventFunctionUPP,
windowRef,
&(*docStrucHdl)->modalToWindowNavDialogRef);
HUnlock((Handle) docStrucHdl);

if(osError == noErr && (*docStrucHdI)->modalToWindowNavDialogRef != NULL)

osError = NavDialogRun((*docStrucHdl)->modalToWindowNavDialogRef);
if(osError '= nokErr)

NavDialogDispose((*docStrucHdl)->modalToWindowNavDialogRef);
(*docStrucHdI)->modalToWindowNavDialogRef = NULL;
}
}

if(dialogOptions.saveFileName !'= NULL)
CFRelease(dialogOptions.saveFileName);

}

return osError;

}

[] FRRRRRRR Rk Rk kR doNewDocWindow

OSErr doNewDocWindow(Boolean showWindow,0SType documentType,WindowRef * windowRef)

OSStatus osError;
WindowAttributes attributes = kWindowStandardHandlerAttribute |
kWindowStandardDocumentAttributes;

Rect portRect, contentRect = { 0,0,300,500 };

docStructureHandle docStrucHdl;

EventTypeSpec windowEvents[] = { { kEventClassWindow, kEventWindowDrawContent 1},
{ kEventClassWindow, kEventWindowClose }
{ kEventClassWindow, kEventWindowClickDragRgn },
{ kEventClassWindow, kEventWindowPathSelect } };

if(gCurrentNumberOfWindows == kMaxWindows)
return eMaxWindows;

Il e create window, change attributes, reposition, install event handler

osError = CreateNewWindow(kDocumentWindowClass,attributes,&contentRect,windowRef);
if(osError '= nokErr)
return osError;

SetWTitle(*windowRef,"\puntitled");
ChangeWindowAttributes(*windowRef,0,kWindowFullZoomAttribute | kWindowResizableAttribute);
RepositionWindow(*windowRef,NULL,kWindowCascadeOnMainScreen);
SetPortWindowPort(*windowRef);

InstallWindowEventHandler(*windowRef,doGetHandlerUPP(),GetEventTypeCount(windowEvents),
windowEvents,0,NULL);

/P attach document
structure to window

if('(docStrucHd| = (docStructureHandle) NewHandle(sizeof(docStructure))))
{

DisposeWindow(*windowRef);
return MemeError();

}

SetWRefCon(*windowRef,(SInt32) docStrucHdl);

(*docStrucHdI)->editStrucHdl = NULL;
(*docStrucHdl)->pictureHdlI = NULL;
(*docStrucHdl)->fileRefNum =0;

(*docStrucHdI)->aliasHdI = NULL; 111
(*docStrucHdl)->windowTouched = false;
(*docStrucHdl)->modalToWindowNavDialogRef = NULL;
(*docStrucHdl)->askSaveDiscardEventFunctionUPP = NULL;
(*docStrucHdl)->isAskSaveChangesDialog = false;

Files and Navigation Services Version 1.0 18-47

L e e e et h e et ee e e e e e et et et e et arear e if text document, create TextEdit
structure

if(documentType == kFileTypeTEXT)
{

UseThemeFont(kThemeSmallSystemFont,smSystemScript);

GetWindowPortBounds(*windowRef,&portRect);
gDestRect = portRect;
InsetRect(&gDestRect,6,6);

gViewRect = gDestRect;

MoveHHi((Handle) docStrucHdl);
HLock((Handle) docStrucHdl);

if(!((*docStrucHdI)->editStrucHdl = TENew(&gDestRect,&gViewRect)))
{

DisposeWindow(*windowRef);
DisposeHandle((Handle) docStrucHdl);
return MemError();

}

HUnlock((Handle) docStrucHdl);
}

] e show window and increment open
windows count

if(showWindow)
ShowWindow(*windowRef);

gCurrentNumberOfWindows ++;

return nokrr;

}

J] FHRRRRRRR R Rk Rk Rk Rk] 0 GetHandlerUPP

EventHandlerUPP doGetHandlerUPP(void)
static EventHandlerUPP windowEventHandlerUPP;

if(windowEventHandlerUPP == NULL)
windowEventHandlerUPP = NewEventHandlerUPP((EventHandlerProcPtr) windowEventHandler);

return windowEventHandlerUPP;

}

J] FRRRRRRR R Rk Rk Rk Rk Rk kR k- J0 CloseDocWindow

OSErr doCloseDocWindow(WindowRef windowRef)

docStructureHandle docStrucHdl;
OSErr osError = nokErr;
EventRef eventRef;
EventTargetRef eventTargetRef;

docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
Il e close file, flush volume, dispose of window and associated memory

if((*docStrucHdl)->fileRefNum != 0)
{
if('(osError = FSClose((*docStrucHdl)->fileRefNum)))
{
osError = FlushVol(NULL, (*docStrucHdl)->fileFSSpec.vRefNum);
(*docStrucHdl)->fileRefNum = 0;
}
}

if((*docStrucHdl)->editStrucHdIl !'= NULL)
TEDispose((*docStrucHdl)->editStrucHdl);

if((*docStrucHdl)->pictureHdIl '= NULL)
KillPicture((*docStrucHdl)->pictureHdl);

DisposeHandle((Handle) docStrucHdl);
DisposeWindow(windowRef);

gCurrentNumberOfWindows --;

18-48 Version 1.0 Files and Navigation Services

if(gQuittingApplication)
{

if(FrontWindow() == NULL)
QuitApplicationEventLoop();
else

CreateEvent(NULL,kEventClassWindow,kEventWindowClose,0,kEventAttributeNone,
&eventRef);
eventTargetRef = GetWindowEventTarget(FrontWindow());
SendEventToEventTarget(eventRef,eventTargetRef);
}
}

return osError;

}

// skokokskskokoskskokokskskokokkskokok sk skokoskskskokoskskskokskskskok sk sk sk sk skoksk sk skokosk sk skoksk sk skoksk sk skokosk sk skok sk sk skok sk sk skok sk skokosk sk kokosk sk kok ok doOpen File

OSErr doOpenFile(FSSpec fileSpec,0SType documentType)

WindowRef windowRef;
OSErr osError = noErr;
SIntl6 fileRefNum;

docStructureHandle docStrucHdl;

if(osError = doNewDocWindow(false,documentType,&windowRef))
return osError;

SetWTitle(windowRef,fileSpec.name);

if(osError = FSpOpenDF(&fileSpec,fsRdWrPerm,&fileRefNum))
{

DisposeWindow(windowRef);
gCurrentNumberOfWindows --;
return osError;

}

T store file reference number and FSSpec in window's document structure

docStrucHd| = (docStructureHandle) GetWRefCon(windowRef);
(*docStrucHdl)->fileRefNum = fileRefNum;
(*docStrucHdlI)->fileFSSpec = fileSpec;

if(documentType == kFileTypeTEXT)
{

if(osError = doReadTextFile(windowRef))
return osError;

}
else if(documentType == kFileTypePICT)
{

if(osError = doReadPictFile(windowRef))
return osError;

}

TR set up window's proxy icon, and
show window

SetWindowProxyFSSpec(windowRef,&fileSpec); 1
GetWindowProxyAlias(windowRef,&((*docStrucHdl)->aliasHdl)); i
SetWindowModified(windowRef,false); 1

ShowWindow(windowRef);

Files and Navigation Services Version 1.0 18-49

return nokrr;

}

[FrRRRccooioioioiosisoisoisoisiiciciioioionk. doCreateAskSaveChangesDialog

OSErr doCreateAskSaveChangesDialog(WindowRef windowRef,docStructureHandle docStrucHdl,
NavAskSaveChangesAction action)

{
OSErr osError = noErr;
NavDialogCreationOptions dialogOptions;
Str255 windowTitle, applicationName;
N create window-modal Save Changes

Changes dialog

osError = NavGetDefaultDialogCreationOptions(&dialogOptions);
if(osError == noErr)
{
GetWTitle(windowRef,windowTitle);
dialogOptions.saveFileName = CFStringCreateWithPascalString(NULL,windowTitle,
CFStringGetSystemEncoding());

GetIndString(applicationName,rMiscStrings,sApplicationName);

dialogOptions.clientName = CFStringCreateWithPascalString(NULL,applicationName,
CFStringGetSystemEncoding());

dialogOptions.parentWindow = windowRef;

dialogOptions.modality = kWindowModalityWindowModal;

if((*docStrucHdl)->askSaveDiscardEventFunctionUPP != NULL)

{
DisposeNavEventUPP((*docStrucHdl)->askSaveDiscardEventFunctionUPP);
(*docStrucHdl)->askSaveDiscardEventFunctionUPP = NULL;

(*docStrucHdl)->askSaveDiscardEventFunctionUPP =
NewNavEventUPP((NavEventProcPtr) askSaveDiscardEventFunction);

HLock((Handle) docStrucHdl);

osError = NavCreateAskSaveChangesDialog(&dialogOptions,action,
(*docStrucHdl)->askSaveDiscardEventFunctionUPP,
windowRef,
&(*docStrucHdl)->modalToWindowNavDialogRef);
HUnlock((Handle) docStrucHdl);

if(osError == noErr && (*docStrucHdl)->modalToWindowNavDialogRef = NULL)
(*docStrucHdl)->isAskSaveChangesDialog = true;

osError = NavDialogRun((*docStrucHdl)->modalToWindowNavDialogRef);
if(osError '= noErr)

NavDialogDispose((*docStrucHdIl)->modalToWindowNavDialogRef);
(*docStrucHdI)->modalToWindowNavDialogRef = NULL;
(*docStrucHdl)->isAskSaveChangesDialog = false;

}

if(!gRunningONX)
{

if(gCloseDocWindow)

{
osError = doCloseDocWindow(windowRef);
if(osError '= nokErr)

doErrorAlert(osError);

gCloseDocWindow = false;

}

}
}

if(dialogOptions.saveFileName != NULL)
CFRelease(dialogOptions.saveFileName);

if(dialogOptions.clientName '= NULL)
CFRelease(dialogOptions.clientName);

}

return osError;

}

// Skokkskokokkskokokkskokokskskokkskskokkokokokkkokskskkokokskkokkskkokkkkokkkokokkkokosk sk kokok sk koksk sk kokok sk kokkkkok >k >k dOSaveUSing FSSpeC

18-50 Version 1.0 Files and Navigation Services

OSErr doSaveUsingFSSpec(WindowRef windowRef,NavReplyRecord *navReplyStruc)

OSErr osError = noErr;
AEKeyword theKeyword;
DescType actualType;
FSSpec fileSpec;

Size actualSize;
docStructureHandle docStrucHdl;
OSType fileType;
CFStringRef fileName;
SIntl6 fileRefNum;

Rect portRect;

if((*navReplyStruc).validRecord)
{

if((osError = AEGetNthPtr(&(*navReplyStruc).selection,1,typeFSS, &theKeyword,
&actualType,&fileSpec,sizeof(fileSpec),&actualSize)) == noErr)

docStrucHd| = (docStructureHandle) GetWRefCon(windowRef);
I e get file name, convert to Pascal string, assign to name field of FSSpec

fileName = NavDialogGetSaveFileName((*docStrucHdl)->modalToWindowNavDialogRef);
if(fleName !'= NULL)
osError = CFStringGetPascalString(fileName, &fileSpec.name[0],sizeof(FSSpec),
CFStringGetSystemEncoding());

PP if not replacing, first create a new
file

if(!((*navReplyStruc).replacing))
{

if((*docStrucHdl)->editStrucHd| !'= NULL)
fileType = kFileTypeTEXT;

else if((*docStrucHdl)->pictureHd! !'= NULL)
fileType = kFileTypePICT;

osError = FSpCreate(&fileSpec,kFileCreator,fileType,(*navReplyStruc).keyScript);
if(osError !'= noErr)
{
NavDisposeReply(&(*navReplyStruc));
return osError;
}
}

Il e assign FSSpec to fileFSSpec field of window's document structure

T if file currently exists for document, close it

if((*docStrucHdl)->fileRefNum != 0)

{
osError = FSClose((*docStrucHdl)->fileRefNum);
(*docStrucHdl)->fileRefNum = 0;

}

PP PP open file's data fork and
write file

if(osError == nokErr)
osError = FSpOpenDF(&(*docStrucHdl)->fileFSSpec,fsRdWrPerm, &fileRefNum);

if(osError == noErr)

{
(*docStrucHdl)->fileRefNum = fileRefNum;
SetWTitle(windowRef,fileSpec.name);

Il e e e e e e e e et et s e e e e e 2 PrOXY icon and file synchronisation stuff
SetPortWindowPort(windowRef); 1
SetWindowProxyFSSpec(windowRef,&fileSpec); 1
GetWindowProxyAlias(windowRef,&((*docStrucHdl)->aliasHdl)); 11
SetWindowModified(windowRef,false); 1

Files and Navigation Services Version 1.0 18-51

Il e e e e e e e ed s is e eee et e e e ee eee aee e e e e e e -2 Wite file using safe save
osError = doWriteFile(windowRef);

NavCompleteSave(&(*navReplyStruc),kNavTranslatelnPlace);
}
}
}

SetPortWindowPort(windowRef);
GetWindowPortBounds(windowRef,&portRect);
EraseRect(&portRect);
InvalWindowRect(windowRef,&portRect);

return osError;

}

// kokkskokokkskokokskskokskskskokkkskokkkokokkkokosk sk kokokskkokok sk kokokkkokkkkokkkkosk sk kokok sk kokok sk kokk sk kokkkkokkk ok dOSaveUSing FSRef

OSErr doSaveUsingFSRef(WindowRef windowRef,NavReplyRecord *navReplyStruc)

{
OSErr osError = nokErr;
AEDesc aeDesc;
Size dataSize;
FSRef fsRefParent, fsRefDelete;
UniCharCount namelength;
UniChar *nameBuffer;
FSSpec fileSpec;
docStructureHandle docStrucHdl;
Finfo fileInfo;
SIntl6 fileRefNum;
Rect portRect;
osError = AECoerceDesc(&(*navReplyStruc).selection,typeFSRef,&aeDesc);
if(osError == noErr)
{
I/

dataSize = AEGetDescDataSize(&aeDesc);
if(dataSize > 0)
osError = AEGetDescData(&aeDesc,&fsRefParent,sizeof(FSRef));
if(osError == noErr)
{

e get file name from saveFileName field of NavReplyRecord

namelLength = (UniCharCount) CFStringGetLength((*navReplyStruc).saveFileName);

nameBuffer = (UniChar *) NewPtr(namelLength);

CFStringGetCharacters((*navReplyStruc).saveFileName,CFRangeMake(0,namelength),
&nameBuffer[0]);

if(nameBuffer '= NULL)

{

/PP PEPTPIN if replacing, delete the file being replaced
if((*navReplyStruc).replacing)
{

osError = FSMakeFSRefUnicode(&fsRefParent,namelLength,nameBuffer,
kTextEncodingUnicodeDefault,&fsRefDelete);
{

if(osError == noErr)

osError = FSDeleteObject(&fsRefDelete);
if(osError == fBsyErr)
{

DisposePtr((Ptr) nameBuffer);

return osError;

7, create file with Unicode name (but it can be written with an FSSpec)

if(osError == noErr)
{
osError = FSCreateFileUnicode(&fsRefParent,namelLength,nameBuffer,kFSCatinfoNone,
NULL,NULL,&fileSpec);
if(osError == nokErr)

{

18-52 Version 1.0 Files and Navigation Services

docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
osError = FSpGetFInfo(&fileSpec,&filelnfo);

if((*docStrucHdl)->editStrucHdl '= NULL)
fileInfo.fdType = kFileTypeTEXT,;

else if((*docStrucHdl)->pictureHd| != NULL)
fileInfo.fdType = kFileTypePICT;

fileInfo.fdCreator = kFileCreator;

if(osError == noErr)
osError = FSpSetFInfo(&fileSpec,&filelnfo);

(*docStrucHdIl)->fileFSSpec = fileSpec;

PP open file's data fork and write
file

if(osError == noErr)
osError = FSpOpenDF(&fileSpec,fsRdWrPerm,&fileRefNum);

if(osError == noErr)

(*docStrucHdl)->fileRefNum = fileRefNum;
SetWTitle(windowRef,fileSpec.name);

Il e e s e e e e et it een e een eee aee e e ... PPOXY icon and file synchronisation stuff

SetPortWindowPort(windowRef); 1
SetWindowProxyFSSpec(windowRef,&fileSpec); 1
GetWindowProxyAlias(windowRef,&((*docStrucHdl)->aliasHdl)); 1111
SetWindowModified(windowRef,false); 1

Il e e e e e e e e e e e e e s e s e eee aee e e e e 2 Wite file using safe save
osError = doWriteFile(windowRef);

NavCompleteSave(&(*navReplyStruc),kNavTranslatelnPlace);
}
}
}
}

DisposePtr((Ptr) nameBuffer);
}

AEDisposeDesc(&aeDesc);
}

SetPortWindowPort(windowRef);
GetWindowPortBounds(windowRef,&portRect);
EraseRect(&portRect);
InvalWindowRect(windowRef,&portRect);

return osError;

}

// oloolkskokskokololololoolololkokskokololololoioollokokokokolololoioioollkkokokololololoiolorlollokskololololoiolorlollolskokololooiolork k- d o \WriteFile

OSErr doWriteFile(WindowRef windowRef)

{
docStructureHandle docStrucHdl;
FSSpec fileSpecActual, fileSpecTemp;
UInt32 currentTime;
Str255 tempFileName;
SInt1l6 tempFileVoINum, tempFileRefNum;
SInt32 tempFileDirlD;
OSErr osError = noErr;

docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
fileSpecActual = (*docStrucHdl)->fileFSSpec;

GetDateTime(¤tTime);
NumToString((SInt32) currentTime,tempFileName);

osError = FindFolder(fileSpecActual.vRefNum,kTemporaryFolderType,kCreateFolder,
&tempFileVolNum,&tempFileDirlD);
if(osError == noErr)
osError = FSMakeFSSpec(tempFileVolNum,tempFileDirlD,tempFileName,&fileSpecTemp);

Files and Navigation Services Version 1.0 18-53

if(osError == nokErr || osError == fnfErr)

osError = FSpCreate(&fileSpecTemp,'trsh','trsh',smSystemScript);
if(osError == noErr)

osError = FSpOpenDF(&fileSpecTemp,fsRdWrPerm,&tempFileRefNum);
if(osError == noErr)

if((*docStrucHdl)->editStrucHdl)
osError = doWriteTextData(windowRef,tempFileRefNum);
else if((*docStrucHdl)->pictureHdl)
osError = doWritePictData(windowRef,tempFileRefNum);
}
if(osError == noErr
osError = FSClose
if(osError == noErr
osError = FSClose
if(osError == noErr)
osError = FSpExchangeFiles(&fileSpecTemp, &fileSpecActual);
if(osError == noErr)
osError = FSpDelete(&fileSpecTemp);
if(osError == noErr)
osError = FSpOpenDF(&fileSpecActual,fsRdWrPerm, &(*docStrucHdl)->fileRefNum);

tempFileRefNum);

(*docStrucHdl)->fileRefNum);

if(osError == noErr)
osError = doCopyResources(windowRef);

return osError;

}

J] FRRRRRRR R Rk Rk oRead TextFile

OSErr doReadTextFile(WindowRef windowRef)

{
docStructureHandle docStrucHdl;
SIntl6 fileRefNum;
TEHandle textEditHdlI;
SInt32 numberOfBytes;
Handle textBuffer;
OSErr osError = nokErr;

docStrucHd| = (docStructureHandle) GetWRefCon(windowRef);
fileRefNum = (*docStrucHdl)->fileRefNum;

textEditHd| = (*docStrucHdl)->editStrucHdl;
(*textEditHd|)->txSize = 10;
(*textEditHdIl)->lineHeight = 15;

SetFPos(fileRefNum,fsFromStart,0);
GetEOF(fileRefNum,&numberOfBytes);

if(numberOfBytes > 32767)
numberOfBytes = 32767;

if(!(textBuffer = NewHandle((Size) numberOfBytes)))
return MemeError();

osError = FSRead(fileRefNum,&numberOfBytes,*textBuffer);
if(osError == noErr || osError == eofErr)
{
HLockHi(textBuffer);
TESetText(*textBuffer,numberOfBytes, (*docStrucHdl)->editStrucHdl);
HUnlock(textBuffer);
DisposeHandle(textBuffer);
}

else
return osError,;

return nokrr;

}

// orlkkkskokololololoiololollolokokololololoioollololokokololololoioolllolokokololololoiolorllolskokslolololoiolorlllskskolololololokokk qoRead PictFile

OSErr doReadPictFile(WindowRef windowRef)

{
docStructureHandle docStrucHdl;
Sintl6 fileRefNum;
SInt32 numberOfBytes;
OSErr osError = nokErr;

docStrucHd| = (docStructureHandle) GetWRefCon(windowRef);

18-54 Version 1.0 Files and Navigation Services

fileRefNum = (*docStrucHdl)->fileRefNum;
GetEOF(fileRefNum,&numberOfBytes);
SetFPos(fileRefNum,fsFromStart,512);
numberOfBytes -= 512;

if(!((*docStrucHdl)->pictureHdl = (PicHandle) NewHandle(numberOfBytes)))
return MemError();

osError = FSRead(fileRefNum,&numberOfBytes,*(*docStrucHdl)->pictureHdl);

if(osError == nokrr || osError == eofErr)
return(nokErr);
else

return osError;

}

[] FRRRRRRR R Rk Rk Rk oW riteTextData

OSErr doWriteTextData(WindowRef windowRef,SInt16 tempFileRefNum)
{

docStructureHandle docStrucHdl;

TEHandle textEditHdl;
Handle editText;
SInt32 numberOfBytes;
SIntl6 volRefNum;
OSErr osError = noErr;

docStrucHd| = (docStructureHandle) GetWRefCon(windowRef);
textEditHd| = (*docStrucHdl)->editStrucHdl;

editText = (*textEditHdIl)->hText;

numberOfBytes = (*textEditHdI)->telLength;

osError = SetFPos(tempFileRefNum,fsFromStart,0);

if(osError == noErr)

osError = FSWrite(tempFileRefNum,&numberOfBytes, *editText);
if(osError == noErr)

osError = SetEOF(tempFileRefNum,numberOfBytes);
if(osError == noErr)

osError = GetVRefNum(tempFileRefNum,&volRefNum);
if(osError == noErr)

osError = FlushVol(NULL,volRefNum);

if(osError == noErr)
(*docStrucHdl)->windowTouched = false;

return osError;

}

// Fororrkkskokokokokololololoolokokokokskokokololorororokokookskokokololololoolokokskokokolololololorklolskokskolololololorrlllskokokk k- o \WritePictData

OSErr doWritePictData(WindowRef windowRef,SInt16 tempFileRefNum)

docStructureHandle docStrucHdl;

PicHandle pictureHdl;

SInt32 numberOfBytes, dummyData;
SIntl6 volRefNum;

OSErr osError = nokErr;

docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);
pictureHdl = (*docStrucHdl)->pictureHdl;

numberOfBytes = 512;
dummyData = 0;

osError = SetFPos(tempFileRefNum,fsFromStart,0);

if(osError == noErr)
osError = FSWrite(tempFileRefNum,&numberOfBytes,&dummyData);

numberOfBytes = GetHandleSize((Handle) (*docStrucHdl)->pictureHdl);
if(osError == noErr)
HLock((Handle) (*docStrucHdl)->pictureHdl);
osError = FSWrite(tempFileRefNum,&numberOfBytes,*(*docStrucHdl)->pictureHdl);

HUnlock((Handle) (*docStrucHdl)->pictureHdl);
}

if(osError == noErr)

Files and Navigation Services Version 1.0

18-55

osError = SetEOF(tempFileRefNum,512 + numberOfBytes);
if(osError == noErr)

osError = GetVRefNum(tempFileRefNum, &volRefNum);
if(osError == noErr)

osError = FlushVol(NULL,volRefNum);

if(osError == noErr)
(*docStrucHdl)->windowTouched = false;

return osError;

}

[FrRRRRcRcRcRooioioiooiosioiosioeisoisoisciicicliiclik. g atFilePutFileEventFunction

void getFilePutFileEventFunction(NavEventCallbackMessage callBackSelector,
NavCBRecPtr callBackParms,NavCallBackUserData callBackUD)
{

OSErr osError = nokErr;
NavReplyRecord navReplyStruc;
NavUserAction navUserAction;

SInt32 count, index;
AEKeyword theKeyword;
DescType actualType;
FSSpec fileSpec;

Size actualSize;

FInfo filelnfo;

OSType documentType;
WindowRef windowRef;
AEDesc aeDesc;
AEKeyword keyWord;
DescType typeCode;
Rect theRect;

Str255 theString, numberString;

docStructureHandle docStrucHdl;
switch(callBackSelector)

case kNavCBUserAction:
osError = NavDialogGetReply(callBackParms->context,&navReplyStruc);
if(osError == noErr && navReplyStruc.validRecord)

{

navUserAction = NavDialogGetUserAction(callBackParms->context);

switch(navUserAction)
{
] e click on Open button in
Open dialog

case kNavUserActionOpen:
if(gModalToApplicationNavDialogRef != NULL)
{

osError = AECountlitems(&(navReplyStruc.selection),&count);
if(osError == noErr)
{
for(index=1;index<=count;index++)
{
osError = AEGetNthPtr(&(navReplyStruc.selection),index,typeFSS,
&theKeyword,&actualType,&fileSpec,sizeof(fileSpec),
&actualSize);
if((osError = FSpGetFInfo(&fileSpec,&filelnfo)) == noErr)

documentType = fileInfo.fdType;
osError = doOpenFile(fileSpec,documentType);
if(osError '= nokErr)

doErrorAlert(osError);

] e click on Save button in Save Location dialog

case kNavUserActionSaveAs:
windowRef = callBackUD;
osError = AECoerceDesc(&navReplyStruc.selection,typeFSRef,&aeDesc);
if(osError == noErr)
{
osError = doSaveUsingFSRef(windowRef,&navReplyStruc);

18-56 Version 1.0 Files and Navigation Services

if(osError '= nokErr)
doErrorAlert(osError);
AEDisposeDesc(&aeDesc);
}
else
{
osError = doSaveUsingFSSpec(windowRef,&navReplyStruc);
if(osError '= nokErr)
doErrorAlert(osError);
}

break;

Ll e click on Choose button in Choose a Folder dialog

case kNavUserActionChoose:
if((osError = AEGetNthPtr(&(navReplyStruc.selection),1,typeFSS,&keyWord,&typeCode,
&fileSpec,sizeof(FSSpec),&actualSize)) == nokErr)

FSMakeFSSpec(fileSpec.vRefNum,fileSpec.parlD,fileSpec.name,&fileSpec);

windowRef = callBackUD;
SetPortWindowPort(windowRef);

TextSize(10);

SetRect(&theRect,0,271,600,300);
EraseRect(&theRect);
doCopyPString(fileSpec.name,theString);
doConcatPStrings(theString, "\p Volume Reference Number: ");
NumToString((SInt32) fileSpec.vRefNum,numberString);
doConcatPStrings(theString,numberString);
doConcatPStrings(theString, "\p Parent Directory ID: ");
NumToString((SInt32) fileSpec.parlD,numberString);
doConcatPStrings(theString,numberString);
MoveTo(10,290);

DrawString(theString);

break;

}

osError = NavDisposeReply(&navReplyStruc);
}

break;

case kNavCBTerminate:
if(gModalToApplicationNavDialogRef != NULL)

NavDialogDispose(gModalToApplicationNavDialogRef);
gModalToApplicationNavDialogRef = NULL;

else

windowRef = callBackUD;

docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

if((*docStrucHdl)->modalToWindowNavDialogRef != NULL)

{
NavDialogDispose((*docStrucHdl)->modalTowWindowNavDialogRef);
(*docStrucHdl)->modalToWindowNavDialogRef = NULL;

}

}
break;
}
}

// skokokskskokoskskskokoskskokokkskokoskkskokosk sk skokosk sk skokoskskskoksk sk skokosk sk skok sk skskok sk sk skok sk skskok sk kkosk sk koksk sk k as kSaveD i sca rd EventFu nction

void askSaveDiscardEventFunction(NavEventCallbackMessage callBackSelector,
NavCBRecPtr callBackParms,NavCallBackUserData callBackUD)
{

WindowRef windowRef;
docStructureHandle docStrucHdl;
NavUserAction navUserAction;
OSErr osError = noErr;
Rect portRect;

switch(callBackSelector)

{

case kNavCBUserAction:
windowRef = callBackUD;
docStrucHdl = (docStructureHandle) GetWRefCon(windowRef);

if((*docStrucHdl)->modalToWindowNavDialogRef != NULL)

Files and Navigation Services Version 1.0 18-57

navUserAction = NavDialogGetUserAction(callBackParms->context);
switch(navUserAction)

PP PPRPPRPN click on Save button in Save Changes

case kNavUserActionSaveChanges:
osError = doSaveCommand();
if(osError !'= nokErr)
doErrorAlert(osError);

PPN click on Don't Save button in Save Changes alert

case kNavUserActionDontSaveChanges:
NavDialogDispose((*docStrucHdl)->modalToWindowNavDialogRef);
if(gRunningONX)
{

osError = doCloseDocWindow(windowRef);
if(osError '= nokErr)
doErrorAlert(osError);
}

else
gCloseDocWindow = true;
break;

P click on OK button in Discard Changes alert

case kNavUserActionDiscardChanges:
GetWindowPortBounds(windowRef,&portRect);
SetPortWindowPort(windowRef);
EraseRect(&portRect);

if((*docStrucHdl)->editStrucHdl '= NULL && (*docStrucHdl)->fileRefNum != 0)

osError = doReadTextFile(windowRef);
if(osError !'= nokErr)
doErrorAlert(osError);

}
else if((*docStrucHdl)->pictureHd! = NULL)
{
KillPicture((*docStrucHdl)->pictureHdl);
(*docStrucHdl)->pictureHdl = NULL;

osError = doReadPictFile(windowRef);
if(osError !'= nokErr)
doErrorAlert(osError);

}
(*docStrucHdl)->windowTouched = false;
SetWindowModified(windowRef,false); 11

InvalWindowRect(windowRef,&portRect);

NavDialogDispose((*docStrucHdl)->modalTowWindowNavDialogRef);
(*docStrucHdl)->modalToWindowNavDialogRef = NULL;
break;

Il e click on Cancel button in Save Changes or Discard Changes alert

case kNavUserActionCancel:
if((*docStrucHdl)->isAskSaveChangesDialog == true)
{
gQuittingApplication = false;
(*docStrucHdl)->isAskSaveChangesDialog = false;
}
NavDialogDispose((*docStrucHdl)->modalTowWindowNavDialogRef);
(*docStrucHdl)->modalToWindowNavDialogRef = NULL;
break;
}
}
break;
}
}

// Skokskskokokkskokokkskokoskskskokkskskokkkkokkkokoskskkokosk sk kokok sk kokkskkokkkkokkkokoskkkokosk sk kokok sk kokok sk kokk sk kokkkk ok dOCOpyReSOU rces

OSErr doCopyResources(WindowRef windowRef)
{

docStructureHandle docStrucHdl;

18-58 Version 1.0 Files and Navigation Services

OSType fileType;

OSErr osError = noErr;
SIntl6 fileRefNum;
Handle editTextHdI, textResourceHdl;

docStrucHd| = (docStructureHandle) GetWRefCon(windowRef);

if((*docStrucHdl)->editStrucHdl)
fileType = kFileTypeTEXT,;

else if((*docStrucHdl)->pictureHdl)
fileType = kFileTypePICT;

FSpCreateResFile(&(*docStrucHdI)->fileFSSpec,kFileCreator,fileType,smSystemScript);

osError = ResError();
if(osError == noErr)
fileRefNum = FSpOpenResFile(&(*docStrucHdl)->fileFSSpec,fsRdWrPerm);

if(fileRefNum > 0)

{
osError = doCopyAResource('STR ',-16396,gAppResFileRefNum,fileRefNum);

if(fileType == kFileTypePICT)

{
doCopyAResource('pnot',128,gAppResFileRefNum,fileRefNum);
doCopyAResource('PICT',128,gAppResFileRefNum,fileRefNum);

if('"gRunningOnX && fileType == kFileTypeTEXT)
{
doCopyAResource('pnot',129,gAppResFileRefNum,fileRefNum);

editTextHdl = (*(*docStrucHdl)->editStrucHdl)->hText;
textResourceHdl = NewHandleClear(1024);
BlockMoveData(*editTextHdl,*textResourceHdl,1024);
UseResFile(fileRefNum);
AddResource(textResourceHdl,'TEXT',129,"\p");
if(ResError() == noErr)
UpdateResFile(fileRefNum);
ReleaseResource(textResourceHdl);
}
}

else
osError = ResError();

if(osError == noErr)
CloseResFile(fileRefNum);

osError = ResError();
return osError;

}

] ook doCopyAResource

OSErr doCopyAResource(ResType resourceType,SIntl6 resourcelD,SInt16 sourceFileRefNum,
SInt16 destFileRefNum)
{

Handle sourceResourceHdl;
Str255 sourceResourceName;
ResType ignoredType;

SIntl6 ignoredID;

UseResFile(sourceFileRefNum);

sourceResourceHdl = GetResource(resourceType,resourcelD);

if(sourceResourceHd! '= NULL)
GetResInfo(sourceResourceHdl,&ignoredID,&ignoredType,sourceResourceName);
DetachResource(sourceResourceHdl);
UseResFile(destFileRefNum);
AddResource(sourceResourceHdl,resourceType,resourcelD,sourceResourceName);
if(ResError() == noErr)

UpdateResFile(destFileRefNum);
}

ReleaseResource(sourceResourceHdl);

return ResError();

Files and Navigation Services Version 1.0 18-59

}

// Skokkskokokkskokokkskokoskkskokskkkokkkskokkkskokkkokok sk kokokskkoksk sk kokok sk koksk sk kokkkkok sk kokokkkokok sk kokosk sk kokosk sk kokok sk skokk sk kokk sk kokkkkok

/! SynchroniseFiles.c
[FRFHRRAAAKARFAAKARAAARRAAAKARAAARARAAAAFAAAARFAAAKAAAAARAAAAKARAAAARARAAAAAAAARFAAAKRAAAARAAAAARAAAARRFAHOAK

extern SIntl6 gCurrentNumberOfWindows;

// skokskskokokkskokokskskokoskkskokkskskokkokokokkkokoskkkokoskskkokok sk kokokskkokkkkokkkkosk sk kokokkkoksk sk kokok sk kokkkkok ok doSynchroniseF“eS

void doSynchroniseFiles(void)

{
WindowRef windowRef;
SIntl6 trashVRefNum;
SInt32 trashDirlD;
docStructureHandle docStrucHdl;
Boolean aliasChanged;
AliasHandle aliasHdl;
FSSpec newFSSpec;
OSErr osError;

windowRef = FrontNonFloatingWindow();

while(windowRef != NULL)
docStrucHd| = (docStructureHandle) GetWRefCon(windowRef);
i{f(docStrucHdI '= NULL)

if((*docStrucHdl)->aliasHdl == NULL)
break;

aliasChanged = false;
aliasHdI = (*docStrucHdl)->aliasHdI;
ResolveAlias(NULL,aliasHdI,&newFSSpec,&aliasChanged);

if(aliasChanged)

{
(*docStrucHdl)->fileFSSpec = newFSSpec;
SetWTitle(windowRef,newFSSpec.name);

}

osError = FindFolder(kUserDomain,kTrashFolderType,kDontCreateFolder,&trashVRefNum,
&trashDirlD);

if(osError == noErr)

{
do

if(newFSSpec.parlD == fsRtParlID)
break;

if((newFSSpec.vRefNum == trashVRefNum) && (newFSSpec.parlD == trashDirlD))
{

FSClose((*docStrucHdl)->fileRefNum);
if((*docStrucHdl)->editStrucHdl)
TEDispose((*docStrucHdl)->editStrucHdl);
if((*docStrucHdl)->pictureHdl)
KillPicture((*docStrucHdl)->pictureHdl);
DisposeHandle((Handle) docStrucHdl);
DisposeWindow(windowRef);
gCurrentNumberOfWindows --;
break;

}
} while(FSMakeFSSpec(newFSSpec.vRefNum,newFSSpec.parlD,"\p",&newFSSpec) == noErr);

}
}

windowRef = GetNextWindow(windowRef);

18-60 Version 1.0 Files and Navigation Services

}
}

/ kokokkokokkokokokkkokokkokokokkkokokkkokokskkok ok skkk ok sk kkkskk sk kskkskkkok sk sk skoksk sk kk sk sk kok sk sk kok sk sk kokkkskokkkksk sk ksksk sk kkk kkokk sk kok

// ChooseAFolderDialog.c
” Skeskeskokok sk sk ok ok sk sk ok ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok ok sk sk ok ok sk sk ok ok sk sk ok ok sk sk k ok sk skosk ok sk sksk ok ok sksk ok ok sk sk sk ok sk skk sk sk skk sk sk sksk ok sk sksk ok sk sk sk ok sk sk sk ok

extern NavEventUPP gGetFilePutFileEventFunctionUPP ;
extern NavDialogRef gModalToApplicationNavDialogRef;

] ook doChooseAFolderDialog

OSErr doChooseAFolderDialog(void)

{
OSErr osError = noErr;
NavDialogCreationOptions dialogOptions;
WindowRef windowRef, parentWindowRef;
Str255 message;

osError = NavGetDefaultDialogCreationOptions(&dialogOptions);
if(osError == noErr)

if((osError = GetSheetWindowParent(FrontWindow(),&parentWindowRef)) == nokErr)
windowRef = parentWindowRef;

else
windowRef = FrontWindow();

GetlndString(message,rMiscStrings,sChooseAFolder);

dialogOptions.message = CFStringCreateWithPascalString(NULL,message,
CFStringGetSystemEncoding());

dialogOptions.modality = kWindowModalityAppModal;

osError = NavCreateChooseFolderDialog(&dialogOptions,gGetFilePutFileEventFunctionUPP
NULL,windowRef,&gModalToApplicationNavDialogRef);

if(osError == noErr && gModalToApplicationNavDialogRef != NULL)

osError = NavDialogRun(gModalToApplicationNavDialogRef);

if(osError '= nokErr)

{
NavDialogDispose(gModalToApplicationNavDialogRef);
gModalToApplicationNavDialogRef = NULL;

}

}
}

return osError;

}

/ kokokkokokkkokokkokokokkokokokkokokok sk kkokskkok ok skkok ok sk kskkskk sk kkkskkskok sk kkoksk sk kok sk sk kok sk sk koksk sk kok sk kskskkkksk sk kksk sk kokk kkokkkkok

Files and Navigation Services Version 1.0 18-61

Demonstration Program Files Comments

When the program is run, the user should:

¢ Exercise the File menu by opening the supplied TEXT and PICT files, saving those files, saving those files under new names,
closing files, opening the new files, attempting to open files that are already open, attempting to save files to new files with
existing names, making open windows "touched" by choosing the first item in the Demonstration menu, reverting to the
saved versions of files associated with "touched" windows, choosing Quit when one "touched" window is open, choosing
Quit when two or more "touched" windows are open, and so on.

* Choose, via the Show pop-up menu button, the file types required to be displayed in the Open dialog.

¢ Choose the Choose a Folder item from the Demonstration menu to display the Choose a Folder dialog, and choose a folder
using the Choose button at the bottom of the dialog. (The name of the chosen folder will be drawn in the bottom-left
corner of the front window.)

¢ With either the PICT Document or the TEXT Document open:

* With the document's Finder icon visible, drag the window proxy icon to the desktop or to another open folder, noting
that the Finder icon moves to the latter. Then choose Touch Window from the Demonstration menu to simulate
unsaved changes to the document. Note that the proxy icon changes to the disabled state. Then save the file, proving
the correct operation of the file synchronisation function. Note that, after the save, the window proxy icon changes
back to the enabled state.

* Command-click the window's title to display the window path pop-up menu, choose a folder from the menu, and note
that the Finder is brought to the foreground and the chosen folder opens.

The program may be run from within CodeWarrior to demonstrate responses to the File menu commands and the Choose a
Folder dialog.

The built application, together with the supplied 'TEXT' and 'PICT"' files, may be used to demonstrate the additional aspect of
integrating the receipt of required Apple events with the overall file handling mechanism. To prove the correct handling of the
required Apple events, the user should:

¢ QOpen the application by double-clicking the application icon, noting that a new document window is opened after the
application is launched and the Open Application event is received.

¢ Double click on a document icon, or select one or more document icons and either drag those icons to the application icon
or choose Open from the Finder's File menu, noting that the application is launched and the selected files are opened when
the Open Documents event is received.

¢ Close all windows and double-click the application icon, noting that the application responds to the Re-open Application
event by opening a new window.

¢ With the PICT Document and the TEXT Document open and "touched", and several other windows open, choose Restart or
Shut Down from the Mac OS 8/9 Finder's Special menu or the Mac OS X Apple menu (thus invoking a Quit Application
event), noting that, for "touched" windows, the Save Changes alert is presented asking the user whether the file should be
saved before the shutdown process proceeds. (On Mac OS X, a Review Unsaved alert will be presented at first.)

Note, however, that no printing functions are included. Thus, selecting one or more document icons and choosing Print from
the Finder's File menu (Mac OS 8/9) will result in the file/s opening but not printing.

Files.h

defines

Constants are established for a 'STR#' resource containing error strings for three specific error conditions, a 'STR#' resource
containing the application's name and the message string for the Choose a Folder dialog, and the 'open' resource containing
the file types list.

KFileCreator represents the application's signature and the next two constants represent the file types that are readable and
writeable by the application.

typedefs

Each window created by the program will have an associated document structure. The docStructure data type will be used for
document structures.

The editStrucHdI field will be assigned a handle to a TextEdit structure (‘'TEXT' files). The pictureHdl field will be assigned a
handle to a Picture structure ('PICT' files). The fileRefNum and fileFSSpec fields will be assigned the file reference number and
the file system specification structure of the file associated with the window. When a file is opened, the aliasHdl field will be
assigned a handle to a structure of type AliasRecord, which contains the alias data for the file. The windowTouched field will
be set to true when a window has been made "touched".

When modal-to-the-window Navigation Services dialogs (Save Location, Save Changes, and Discard Changes alerts) are

created, the dialog reference will be assigned to the modalToWindowNavDialogRef field. When Save Changes and Discard
Changes alerts are created, a universal procedure pointer to the associated event (callback) function will be assigned to the

18-62 Version 1.0 Files and Navigation Services

askSaveDiscardChangesDialog field. When a Save Changes alert is created, the isAskSaveChangesDialog field will be set to
true to enable the associated event (callback) function to re-set a "quitting application" flag if the user clicks the Cancel
button in a Save Changes alert (but not if the user clicks the Cancel button in a Discard Changes alert).

Files.c

Global Variables

gAppResFileRefNum will be assigned the file reference number of the application's resource fork.
gGetFilePutFileEventFunctionUPP will be assigned a universal procedure pointer to the event (callback) function associated
with the Open, Save Location, and Choose a Folder dialogs. gQuittingApplication is set to true in certain circumstances within
quitAppEventHandler and to false if the Cancel button is clicked in a Save Changes or Review Unsaved alert.

main

The file reference number of the application's resource fork (which is opened automatically at application launch) is assigned
to the global variable gAppResFileRefNum.

After the required Apple event handlers are installed, the program's application event handler and an timer are installed. The
timer is set to fire at an interval of 15 ticks, and will be used to trigger calls to the function doldle, which calls the program's
file synchronisation function.

A universal procedure pointer to the event (callback) function associated with the Open, Save Location, and Choose a Folder
dialogs is created and assigned to the global variable gGetFilePutFileEventFunctionUPP.

doinstallAEHandlers

dolnstallAEHandlers installs handlers for the Open Application, Re-Open Application, Open Document, Print Documents, and
Quit Application events. Since the program installs its own Quit Application event handler, the default Quit Application event
handler will not be installed when RunApplicationEventLoop is called.

windowEventHandler

windowEventHandler is the program's window event handler (a callback function), which is installed on all document windows.

Note that, when the event type kEventWindowClose is received, the constant passed in the call to doCloseCommand depends
on whether the global variable gQuittingApplication is set to true or false. Amongst other things, this constant affects the text
in the Save Changes alert.

Note also that no code is required in a Carbon application to handle window path pop-up menus. The standard window
handler handles all user interaction with window path pop-up menus, including bringing the Finder to the front when the user
chooses a folder.

doldle

doldle is called when the installed timer fires. If the front window is a document window, doSynchroniseFiles is called to
synchronises the application with the actual current location (and name) of its currently open document files.

doDrawContent

doDrawContent is called when the kEventWindowDrawContent event type is received. It performs such window updating as is
necessary for the satisfactory execution of the demonstration aspects of the program.

doMenuChoice

At the File_Close case, kNavSaveChangesClosingDocument is passed in the call to doCloseCommand. This affects the wording
in the Save Changes alert.

doAdjustMenus

If the program is running on Mac OS X, GetSheetWindowParent is called as a way of determining whether the frontmost
window is a sheet. Ifitis, the File and Demonstration menus are adjusted accordingly.

doTouchWindow

doTouchWindow is called when the user chooses the Touch Window item in the Demonstration menu. Changing the content
of the in-memory version of a file is only simulated in this program. The text "WINDOW TOUCHED" is drawn in window and
the windowTouched field of the document structure is set to true.

SetWindowModified is called with true passed in the modified parameter. This causes the proxy icon to appear in the disabled
state, indicating that the window has unsaved changes.

openAppEventHandler, reopenAppEventHandler, and
openAndPrintDocsEventHandler

The handlers for the first four required Apple events are essentially identical to those in the demonstration program
AppleEvents. One major difference is that one handler (openAndPrintDocsEventHandler) is used for both the Open Documents
and Print Documents events, with a value passed in the handler's handlerRefcon parameter advising the handler which of the
two events has been received.

Files and Navigation Services Version 1.0 18-63

Most programs should simply open a new untitled window on receipt of an Open Application event. Accordingly,
openAppEventHandler simply calls the same function (doNewCommand) as is called when the user chooses New from the File
menu.

On receipt of a Re-Open Application event, if no windows are currently open, doNewCommand is called to open a window.

The demonstration program supports both 'TEXT' and 'PICT' files. On receipt of an Open Application event, it is thus
necessary to determine the type of each file specified in the event. Accordingly, within openAndPrintDocsEventHandler, the
call to FSpGetFInfo returns the Finder information from the volume catalog entry for the file relating to the specified FSSpec
structure. The fdType field of the Finfo structure "filled-in" by FSpGetFInfo contains the file type. This, together with the
FSSpec structure, is then passed in the call to doOpenFile. (doOpenFile is also called when the user chooses Open from the
File menu.)

quitAppEventHandler

Much of the code in quitAppEventHandler has to do with the requirement, on Mac OS X only, to present a Review Unsaved
alert if more than one window with unsaved changes is open when the event is received.

If no windows are open, QuitApplicationEventLoop is called to close the application down. If at least one window is open, the
following occurs.

GetFrontWindowOfClass is called to determine whether any window has a sheet. If so, that window is brought to the front and
activated and the handler returns immediately, keeping the application alive.

The do-while loop walks the window list counting the number of document windows with unsaved changes (that is, "touched"
windows) and, at the same time, bringing those windows to the front. At the next block, if there are no touched document
windows, QuitApplicationEventLoop is called to close the application down.

If the application is running on Mac OS X, the following occurs:

* If there is only one touched window open, the flag gQuittingApplication is set to true and a kEventWindowClose event is
created and sent to the front window. As will be see, this results in a sequence involving doCloseCommand and
doCloseDocWindow whereby all untouched windows in front of the touched window are disposed of and a Save Changes
alert is presented for the touched window. In this sequence, if the event handler for the Save Changes alert detects a
Cancel button click, gQuittingApplication will be set to false, an action which will cause the process of closing down the
remaining windows and the application to be terminated. If the Save or Don't Save buttons are clicked, all remaining
windows will be closed down, and the program will be closed down by a call to QuitApplicationEventLoop, within the
function doCloseDocWindow.

¢ If more than one window has been touched, doReviewChangesAlert is called to create, display and handle a Review
Changes alert. If the Review Changes... button is hit, the flag gQuittingApplication is set to true and a kEventWindowClose
event is created and sent to the front window, resulting in the same general process of close-down, and possible
termination of that close-down process, described above. If the Cancel button is hit, the flag gQuittingApplication is set to
false (which defeats the execution of the last block of code in doCloseDocWindow) and quitAppEventHandler simply
returns. If the Discard Changes button is hit, QuitApplicationEventLoop is called to terminate the program.

If the application is running on Mac OS 8/9, a Review Unsaved alert is not invoked. Instead, a kEventWindowClose event is
created and sent to the front window. This results in the the same general process of close-down, and possible termination of
that close-down process, described above. If the Cancel button is not clicked in all Save Changes alerts, all windows will be
closed down, and QuitApplicationEventLoop called, within the function doCloseDocWindow.

NewOpenCloseSave.c

Global Variables

gModalToApplicationNavDialogRef will be assigned the dialog reference for the Open File dialog, which is made application-
modal. gCurrentNumberOfWindows keeps a count of the number of windows opened. gDestRect and gViewRect are used to
set the destination and view rectangles for the TextEdit structures associated with 'TEXT' files.

doNewCommand

doNewCommand is called when the user chooses New from the File menu and when an Open Application or Re-Open
Application event is received.

Since this demonstration does not support the actual entry of text or the drawing of graphics, the document type passed to
doNewDocWindow is immaterial. The document type 'TEXT' is passed in this instance simply to keep doNewDocWindow

happy.

If doNewDocWindow returns no error, SetWindowProxyCreatorAndType is called to set the proxy icon for the window. (A new,
untitled window, even though it has no associated file, needs a proxy icon to maintain visual consistency with other windows
which have associated files.) The proxy icon will display in the disabled state, indicating, in this particular case, that the
window has no associated file rather than unsaved changes.

The creator code and file type passed in the second and third parameters of SetWindowProxyCreatorAndType determine the
icon to be displayed.)

doOpenCommand

doOpenCommand, which is called when the user chooses Open from the File menu, uses Navigation Services 3.0 functions to
create and display a application-modal Open dialog.

18-64 Version 1.0 Files and Navigation Services

NavGetDefaultDialogCreationOptions initialises the specified NavDialogCreationOptions structure with the defaults.

GetIndString retrieves the application's name and assigns it to an Str255 variable. This is then converted to a CFString and
assigned to the clientName field of the NavDialogCreationOptions structure. This will cause the application's name to appear
in the dialog's title bar.

The next line assigns a value to the modality field of the NavDialogCreationOptions structure which will cause the dialog to be
application-modal.

An 'open' resource containing the file type list is then read in and the handle assigned a variable of type NavTypeListHandle.
(The 'open' resource specifies that 'TEXT' and 'PICT' file types are supported.)

The call to NavCreateGetFileDialog creates the dialog. Since the default options are being used, multiple file selection is
allowed. A universal procedure pointer to the event function getFilePutFileEventFunction, which will respond to button clicks
in the dialog, is passed in the third parameter. No preview function or filter function is used, and no user data is passed in.
The last parameter (a global variable) receives the dialog reference.

The call to NavDialogRun displays the dialog.
doCloseCommand

doCloseCommand is called when the user chooses Close from the File menu or clicks in the window's go-away box. Itis also
called successively for each open window when a Quit Application Apple event is received.

The first two lines get a reference to the front window and establish whether the front window is a document window or a
modeless dialog.

If the front window is a document window, the handle to the window's document structure is retrieved from the window's
window object, allowing a check of whether the window is touched (that is, has unsaved changes). If it does,
doCreateAskSaveChangesDialog is called to create and display a Save Changes alert and the function returns, otherwise
doCloseDocWindow is called. Prior to the call to doCreateAskSaveChangesDialog, if the window is collapsed (Mac OS 8/9) or
minimized in the dock (Mac OS X) it is first uncollapsed or brought out of the Dock.

No modeless dialogs are used by this program. However, if the front window was a modeless dialog, the appropriate action
would be taken at the second case.

doSaveCommand

doSaveCommand is called when the user chooses Save from the File menu or clicks the Save button in a Save Changes alert.

The first two lines get the WindowRef for the front window and retrieve the handle to that window's document structure. If a
file currently exists for the document in this window, the function doWriteFile is called. The next four lines are incidental to
the demonstration; they simply remove the words "WINDOW TOUCHED" from the window.

SetWindowModified is called with false passed in the modified parameter. This causes the window proxy icon to appear in the
enabled state, indicating no unsaved changes.

doSaveAsCommand

doSaveAsCommand uses Navigation Services 3.0 functions to create and display a window-modal Save Location dialog. Itis
called when the user chooses Save As... from the File menu. It is also called by doSaveCommand if the user chooses Save
when the front window contains a document for which no file currently exists.

NavGetDefaultDialogCreationOptions initialises the specified NavDialogCreationOptions structure with the defaults. The first
line in the if block unsets the "allow saving of stationery files" bit (one of the defaults). On Mac OS 8/9, this means that the
dialog will not contain the Format: pop-up menu.

GetWTitle gets the front window's title into an Str255 variable. This is then converted to a CFString and assigned to the
saveFileName field of the NavDialogCreationOptions structure. This will be the default name for the saved file and will appear
in the Name (OS 8/9) and Save As (OS X) edit text fields in the Save Location dialog.

The next two lines assign the application's name to the clientName field of the NavDialogCreationOptions structure. This will
then appear in the dialog's title bar.

The next two lines assign the window reference to the parentWindow field of the NavDialogCreationOptions structure and
assign a value to the modality field which will cause the dialog to be window-modal.

The next block gets the file type from the window's document structure into a local variable.

The call to NavCreatePutFileDialog creates the dialog. A universal procedure pointer to the event function
getFilePutFileEventFunction, which will respond to button clicks in the dialog, is passed in the fourth parameter. The window
reference is passed in the fifth (user data) parameter. This will be passed to the event function. The dialog reference is
assigned to a field of the window's document structure.

The call to NavDialogRun displays the dialog.
doRevertCommand

doRevertCommand, which is called when the user chooses Revert from the File menu, uses Navigation Services 3.0 functions
to create and display a window-modal Discard Changes alert. The general approach is similar to that used to create and

Files and Navigation Services Version 1.0 18-65

display the Save Location dialog, the main difference being that a universal procedure pointer to the event function
askSaveDiscardEventFunction is stored in the askSaveDiscardEventFunctionUPP field of the window's document structure.

doNewDocWindow

doNewDocWindow is called by doNewCommand and doOpenFile.

If the current number of open windows is the maximum allowable by this program, the function immediately exits, returning
an error code which will cause an advisory error alert to be displayed.

The call to CreateNewWindow creates a new window with the standard document window attributes and with the standard
window event handler installed. SetWTitle is called to set the window's title to "untitled". ChangeWindowAttributes is called
to remove the zoom box/button and grow box from the window. The call to InstallWindowEventHandler installs the program's
window event handler on the window.

The call to NewHandle allocates memory for the window's document structure. If this call is not successful, the window is
disposed of and the function returns with the error code returned by MemError. The call to SetWRefCon assigns the handle to
the document structure to the window structure's refCon field. The next block initialises fields of the document structure.

If the document type is 'TEXT', the if block executes, creating a TextEdit structure and assigning a handle to that structure to
the editStrucHdlI field of the document structure. (Note that the processes here are not explained in detail because TextEdit
and TextEdit structures are not central to the demonstration. For the purposes of the demonstration, it is sufficient to
understand that the text data retrieved from, and saved to, disk is stored in a TextEdit structure. (TextEdit is addressed in
detail at Chapter 21.))

If the Boolean value passed to doNewDocWindow was set to true, the call to ShowWindow makes the window visible,
otherwise the window is left invisible. The penultimate line increments the global variable which keeps track of the number of
open windows.

doCloseDocWindow

doCloseDocWindow is called from doCloseCommand when the subject window is not touched and from the Save Changes alert
event handler askSaveDiscardEventFunction when the user clicks the Save or Don't Save buttons in a Save Changes alert.

The FSClose call closes the file, and FlushVol stores to disk all unwritten data currently in the volume buffer.

If the document is a text document, the TextEdit structure is disposed of. If it is a picture document, the Picture structure is
disposed of. Finally, the document structure and window are disposed of and the global variable which keeps track of the
number of open windows is decremented.

The last block executes only if gQuittingApplication has been set to true in the function quitAppEventHandler. If all windows
have been closed, QuitApplicationEventLoop is called to terminate the program; otherwise a kEventWindowClose is created
and sent to the front window, causing doCloseCommand to be called from the window event handler. This repetitive calling of
doCloseCommand and doCloseDocWindow will continue until no windows remain or until gQuittingApplication is set to false by
a click in the Cancel button in a Save Changes or, on Mac OS X only, a Review Unsaved alert.

doOpenfFile

doOpenFile opens a new document window and calls the functions which read in the file. It is called by the event function
getFilePutFileEventFunction when an Open button click occurs in an Open dialog. The event function passes the file system
specification structure and document type to doOpenFile.

The call to doNewDocWindow opens a new window and creates an associated document structure. SetWTitle sets the
window's title using information in the file system specification structure. FSpOpenDF opens the file's data fork. If this call is
not successful, the window is disposed of and the function returns. The next three lines assign the file reference number and
file system specification structure to the relevant fields of the document structure.

The next block calls the appropriate function for reading in the file, depending on whether the file type is of type 'TEXT' or
'PICT'. If the file is read in successfully, ShowWindow makes the window visible.

Just before the call to ShowWindow, SetWindowProxyFSSpec is called to establish a proxy icon for the window and associate
the file with the window. (The creator code and file type of the file determine the icon to be displayed.) GetWindowProxyAlias
assigns a copy of the alias data for the file to the aliasHdI field of the window's document structure. (This is used by the file
synchronisation function.) SetWindowModified is called with false passed in the modified parameter. This causes the window
proxy icon to appear in the enabled state, indicating no unsaved changes.

doCreateAskSaveChangesDialog

doCreateAskSaveChangesDialog, which is called from doCloseCommand, uses Navigation Services 3.0 functions to create and
display a window-modal Save Changes alert. The general approach is similar to that used to create and display the Discard
Changes alert, but note that in this case that the isAskSaveChangesDialog field of the window's document structure is set to
true.

Note also that, if the program is running on Mac OS 8/9, and if gCloseDocWindow is true, doCloseDocWindow is called to close
the file, flush the volume, and close down the window. (gCloseDocWindow is set to true in the callback function
askSaveDiscardEventFunction if the user clicks the Don't Save push button button in the Save Changes alert.)

doSaveUsingFSSPec

As will be seen in the event function getFilePutFileEventFunction, when the user clicks on the Save button in a Save Location
dialog, AECoerceDesc is called on the descriptor structure in the selection field of the NavReplyRecord structure in an attempt

18-66 Version 1.0 Files and Navigation Services

to coerce it to type FSRef. If the call is successful (meaning that the program is running on Mac OS X), doSaveUsingFSRef is
called to perform the save using the HFS Plus API. If the call is not successful (meaning that the program is running on Mac
OS 8/9) this function (doSaveUsingFSSpec) is called.

A descriptor structure is returned in the selection field of the NavReplyRecord structure. AEGetNthPtr coerces the descriptor
structure to typeFSS and stores the result in the local variable fileSpec.

The name field of fileSpec will be empty at this stage. Accordingly, the Navigation Services 3.0 function
NavDialogGetSaveFileName is called to get a CFStringRef to the filename from the dialog object, which is converted to a
Pascal string and assigned to the name field of fileSpec.

If the value in the replacing field of the NavReplyRecord structure indicates that the file is not being replaced, FSpCreate is
called to create a new file of the specified type and with the application's signature as the specified creator. If this call is not
successful, the NavReplyRecord structure is disposed of and the function returns.

The file system specification structure returned by the FSpCreate call is assigned to the fileFSSpec field of the window's
document structure. If a file currently exists for the document, that file is closed by the call to FSClose. The data fork of the
newly created file is then opened by a call to FSpOpenDF, the fileRefNum field of the document structure is assigned the file
reference number returned by FSpOpenDF, the window's title is set to the new file's name, and the function doWriteFile is
called to write the document to the new file. NavCompleteSave is called to complete the save operation.

Just before the call to doWriteFile, SetWindowProxyFSSpec is called to establish a proxy icon for the window and associate the
file with the window. (The creator code and file type of the file determine the icon to be displayed.) GetWindowProxyAlias
assigns a copy of the alias data for the file to the aliasHdl field of the window's document structure. (This is used by the file
synchronisation function.) SetWindowModified is called with false passed in the modified parameter. This causes the window
proxy icon to appear in the enabled state, indicating no unsaved changes.

doSaveUsingFSRef

doSaveUsingFSRef, which is called from the event function getFilePutFileEventFunction, performs the save using the HFS Plus
API. The main if block executes only if the call to AECoerceDesc is successful in coercing the descriptor structure in the
selection field of the NavReplyRecord to type FSRef.

In Carbon, the dataHandle field of descriptor structures is opaque. Thus AEGetDescData is used to extract the data in this
field, which is assigned to the local variable fsRefParent. This is the FSRef for the parent directory.

At the next block, CFStringGetLength is called to get the number of 16-bit Unicode characters in the saveFileName field of the
NavReplyRecord structure. This facilitates the call to CFStringGetCharacters, which extracts the contents of the string into a
buffer.

If the value in the replacing field of the NavReplyRecord structure indicates that the file is being replaced, the existing file is
first deleted. FSMakeFSRefUnicode, given a parent directory and Unicode file name, creates an FSRef for the file. This is
passed in the call to FSDeleteObject, which deletes the file.

The call to FSCreateFileUnicode creates a new file with the Unicode name. On return, the last parameter contains a file
system specification structure for the new file. (Although the file is created with a Unicode name, it can be written using a file
system specification structure.)

The call to FSpGetFInfo gets the Finder information from the volume catalog entry for the file. The file type extracted from the
window's document structure is then assigned to the fdType field of the returned FInfo structure, following which FSpSetFinfo
is called to set the new Finder information in the file's volume catalog entry.

The file system specification structure is assigned to the fileFSSpec field of the window's document structure.

The data fork of the newly created file is then opened by a call to FSpOpenDF, the fileRefNum field of the document structure
is assigned the file reference number returned by FSpOpenDF, the window's title is set to the new file's name, and the
function doWriteFile is called to write the document to the new file. NavCompleteSave is called to complete the save
operation.

Just before the call to doWriteFile, SetWindowProxyFSSpec is called to establish a proxy icon for the window and associate the
file with the window. (The creator code and file type of the file determine the icon to be displayed.) GetWindowProxyAlias
assigns a copy of the alias data for the file to the aliasHdl field of the window's document structure. (This is used by the file
synchronisation function.) SetWindowModified is called with false passed in the modified parameter. This causes the window
proxy icon to appear in the enabled state, indicating no unsaved changes.

doWriteFile

doWriteFile is called by doSaveCommand, doSaveUsingFSSPec, and doSaveUsingFSRef. In conjunction with two supporting
functions, it writes the document to disk using the "safe-save" procedure.

The first two lines retrieve a handle to the document structure and the file system specification from the document structure.
The next two lines create a temporary file name which is bound to be unique. FindFolder finds the temporary folder on the
file's volume, or creates a temporary folder if necessary. FSMakeFSSpec makes a file system specification structure for the
temporary file, using the volume reference number and parent directory ID returned by the FindFolder call. FSpCreate creates
the temporary file in that directory on that volume, and FSpOpenDF opens the file's data fork.

Within the next if block, the appropriate function is called to write the document's data to the temporary file.

Files and Navigation Services Version 1.0 18-67

The two calls to FSClose close both the temporary and existing files prior to the call to FSpExchangeFiles, which swaps the
files' data. The temporary file is then deleted and the data fork of the existing file is re-opened.

The function doCopyResources is called to copy the missing application name string resource from the resource fork of the
application file to the resource fork of the new document file. If the file type is 'PICT', a 'pnot' resource and associated 'PICT'
resource is also copied to the resource fork.

doReadTextFile

doReadTextFile is called by doOpenFile and the event function askSaveDiscardEventFunction to read in data from an open file
of type 'TEXT".

The first two lines retrieve the file reference number from the document structure.

The next three lines retrieve the handle to the TextEdit structure from the document structure and modify the text size and
line height fields of the TextEdit structure.

SetFPos sets the file mark to the beginning of the file. GetEOF gets the number of bytes in the file. If the number of bytes
exceeds that which can be stored in a TextEdit structure (32,767), the number of bytes which will be read from the file is
restricted to 32,767.

NewHandle allocates a buffer equal to the size of the file (or 32,767 bytes if the preceding if statement executed). FSRead
reads the data from the file into the buffer. MoveHHi and HLockHi move the buffer high in the heap and lock it preparatory to
the call to TESetText. TESetText copies the text in the buffer into the existing hText handle of the TextEdit edit structure. The
buffer is then unlocked and disposed of.

doReadPictFile

doReadPictFile is called by doOpenFile and the event function askSaveDiscardEventFunction to read in data from an open file
of type 'PICT".

The first two lines retrieve the file reference number from the document structure. GetEOF gets the number of bytes in the
file. SetFPos sets the file mark 512 bytes (the size of a 'PICT' file's header) past the beginning of the file, and the next line
subtracts the header size from the total size of the file. NewHandle allocates memory for the Picture structure and FSRead
reads in the file's data.

doWriteTextData

doWriteTextData is called by doWriteFile to write text data to the specified file.

The first two lines retrieve the handle to the TextEdit structure from the document structure. The number of bytes of text is
then retrieved from the teLength field of the TextEdit structure.

SetFPos sets the file mark to the beginning of the file. FSWrite writes the specified number of bytes to the file. SetEOF
adjusts the file's size. FlushVol stores to disk all unwritten data currently in the volume buffer.

The penultimate line sets the windowTouched field of the document structure to indicate that the document data on disk
equates to the document data in memory.

doWritePictData

doWritePictData is called by doWriteFile to write picture data to the specified file.

The first two lines retrieve the handle to the relevant Picture structure from the document structure. SetFPos sets the file
mark to the start of the file. FSWrite writes zeros in the first 512 bytes (the size of a 'PICT' file's header). GetHandleSize gets
the size of the Picture structure and FSWrite writes the bytes in the Picture structure to the file. SetEOF adjusts the file's size
and FlushVol stores to disk all unwritten data currently in the volume buffer.

The penultimate line sets the windowTouched field of the document structure to indicate that the document data on disk
equates to the document data in memory.

getFilePutFileEventFunction

getFilePutFileEventFunction is the event (callback) function pertaining to the Open, Save Location, and Choose a Folder
dialogs. It responds to button clicks in those dialogs.

When the user has clicked one of the dialog's buttons, the kNavCBUserAction message is received in the callBackSelector
formal parameter. When this message is received, the first action is to call NavDialogGetReply to get a NavReplyRecord
structure containing information about the dialog session. NavDialogGetUserAction is then called to get the user action which
dismissed the dialog.

If the user clicked the Open button in an Open dialog, AECountltems is called to count the number of descriptor structures in
the descriptor list returned in the selection field of the NavReplyRecord structure, and which is created from FSSpec
references to items selected in the Open dialog. The for loop repeats for each of the descriptor structures. AEGetNthPtr gets
the file system specification into a local variable of type FSSpec. This file system specification is then passed in the first
parameter of a call to FSpGetFInfo, allowing the file type to be ascertained. The file system specification and file type are
then passed in a call to the function doOpenFile, which creates a new window and reads in the file.

If the user clicked the Save button in a Save Location dialog, the window reference received in the callBackUD formal

parameter is assigned to the local variable windowRef. (Recall that the window reference for the front window was passed in
the fifth parameter of the call to NavCreatePutFileDialog.) The next task is to determine which of the two file saving functions

18-68 Version 1.0 Files and Navigation Services

(doSaveUsingFSSpec or doSaveUsingFSRef) should be called to save the file. Accordingly, AECoerceDesc is called in an
attempt to coerce the descriptor structure in the selection field of the NavReplyRecord structure to type FSRef. If the call is
successful, doSaveUsingFSRef is called; if not, doSaveUsingFSSpec is called.

If the user clicked the Choose button in a Choose a Folder dialog, AEGetNthPtr is called to get the file system specification into
a local variable of type FSSpec. When a file system specification describes a directory, as it does in this case, the name field
is empty and the parlD field contains the directory ID of that directory, not the ID of the parent directory. In this
demonstration, the volume reference number and directory ID are passed in a call to FSMakeFSSpec, which fills in the fields of
the FSSpec record pointed to by the fourth parameter. The contents of the fields of this FSSpec structure (the directory name,
its parent directory ID, and the volume reference number) are then drawn in the bottom of the front window.

Before exit from the kNavCBUserAction case, NavDisposeReply is called to release the memory allocated for the
NavReplyRecord structure.

When the user has clicked a dialog's Cancel button, the kNavCBTerminate message is received in the callBackSelector formal
parameter. When this message is received, if a dialog reference has been assigned to the global variable
gModalToApplicationNavDialogRef (as it will be in the case of the application-modal Open and Choose a Folder dialogs), the
dialog is disposed of and the global variable is assigned NULL. If gModalToApplicationNavDialogRef contains NULL, the
window reference received in the callBackUD formal parameter is assigned to the local variable windowRef. (Recall that the
window reference for the front window was passed in the fifth parameter of the call to NavCreatePutFileDialog.) A handle to
the window's document structure is then retrieved, allowing access to the dialog reference stored in that structure. The dialog
is disposed of and the relevant field of the document structure is assigned NULL.

Note that, in Carbon applications, there is no need to respond to the kNavCBEvent message in this event function or the
following event function in order to call the application's window updating function. This is assuming the standard window
event handler is installed on the relevant windows, the application registers for the kEventWindowDrawContent event type,
and calls its window updating function when that event type is received. The following example is provided for those
circumstances in which these conditions are not met:

case kNavCBEvent:
switch(callBackParms->eventData.eventDataParms.event->what)
{
case updateEvt:
windowRef = (WindowRef) callBackParms->eventData.eventDataParms.event->message;
if(GetWindowKind(windowRef) != kDialogWindowKind)
doUpdate((EventRecord *) callBackParms->eventData.eventDataParms.event);
break;
}

break;

askSaveDiscardEventFunction

askSaveDiscardEventFunction is the event (callback) function pertaining to the Save Changes and Discard Changes alerts. It
responds to button clicks in those dialogs.

When the user has clicked one of the dialog's buttons, the kNavCBUserAction message is received in the callBackSelector
formal parameter. When this message is received, the first action is to get a handle to the front window's document
structure. (Recall that the reference to the front window was passed in the third parameter of the
NavCreateAskSaveChangesDialog and NavCreateAskDiscardChangesDialog calls.) The main if block executes only if the
modalToWindowNavDialogRef field of the document structure contains a dialog reference.

If the user clicked the Save button in a Save Changes alert, doSaveCommand is called to save the file and execution falls
through to the kNavUserActionDontSaveChanges case where doCloseDocWindow is called to close the file, flush the volume,
and close down the window.

If the user clicked the Don't Save button in a Save Changes alert, and if the program is running on Mac OS X,
doCloseDocWindow is called to close the file, flush the volume, and close down the window. If the program is running on Mac
0S 9, the global variable gCloseDocWindow is set to true, causing the doCloseDocWindow call to occur in the function
doCreateAskSaveChangesDialog. Before all this occurs, NavDialogDispose is called to dispose of the alert before the window
is closed by the call to doCloseDocWindow.

If the user clicked the OK button in a Discard Changes alert, the window's content area is erased and the appropriate function
(doReadTextFile or doReadPictFile) is called depending on whether the file type is 'TEXT' or 'PICT'. In addition, the window's
"touched" field in the document structure is set to false and InvalWindowRect is called to force a redraw of the window's
content region. Just before the InvalWindowRect call, SetWindowModified is called with false passed in the modified
parameter. This causes the window proxy icon to appear in the enabled state, indicating no unsaved changes. The Discard
Changes alert is then disposed of.

If the user clicked the Cancel button in a Save Changes or Discard Changes alert, and if it is a Save Changes alert, the flag
gQuittingApplication is set to false. This has the effect of defeating the execution of the last block of code in the function
doCloseDocWindow. (Recall that the isAskSaveChangesDialog field of the window's document structure is set to true when
such alerts are created.) The alert is then disposed of.

doCopyResources

doCopyResources is called by doWriteFile. It copies the missing application name string resource from the resource fork of
the application file to the resource fork of the new file. If the file type is PICT, a 'pnot' resource and associated 'PICT' resource
is also copied. If the program is running on Mac OS 8/9 and the file type is TEXT, a 'pnot' resource, together with a 'TEXT'
resource created within the function, are also copied. (For 'TEXT' files, previews are automatically created on Mac OS X.)

Files and Navigation Services Version 1.0 18-69

The first line retrieves a handle to the file's document structure. The next four lines establish the file type involved.
FSpCreateResFile creates the resource fork in the new file and FSpOpenResFile opens the resource fork. The function for
copying specified resources between specified files (doCopyAResource) is then called to copy the missing application name
string resource from the resource fork of the application file to the resource fork of the new file.

If the file type is 'PICT', a 'pnot' resource and associated 'PICT' resource is copied so as to provide a preview for 'PICT' files in
the Open dialog. (Of course, in a real application, the 'pnot' and 'PICT' resource would be created by the application for each
separate 'PICT' file.)

If the program is running on Mac OS 8/9 and the file type is 'TEXT', a 'pnot' resource is copied and a 'TEXT' resource is created
and copied so as to provide a a preview for 'TEXT' files in the Open dialog. After the 'pnot' resource is copied, a relocatable
block is created and 1024 bytes of the text in the TextEdit structure is copied to that block. AddResource turns that arbitrary
data in memory into a 'TEXT' resource, assigns a resource type, ID, and name to that resource, and inserts an entry in the
resource map for the current resource file (in this case, the resource fork of the TEXT file). UpdateResFile then writes the
resource map and data to disk.

CloseResFile closes the resource fork of the new file.

doCopyAResource

doCopyAResource copies specified resources between specified files. In this program, it is called only by doCopyResources.

UseResFile sets the application's resource fork as the current resource file. GetResource reads the specified resource into
memory.

GetResInfo, given a handle, gets the resource type, ID and name. (Note that this line is included only because of the generic
nature of doCopyResource. The calling function has passed doCopyResource the type and ID in this instance.)

DetachResource removes the resource's handle from the resource map without removing the resource from memory, and
converts the resource handle into a generic handle. UseResFile makes the new file's resource fork the current resource file.
AddResource makes the now arbitrary data in memory into a resource, assigns a resource ID, type and name to that resource,
and inserts an entry in the resource map for the current resource file. UpdateResFile then writes the resource map and data
to disk.

SynchroniseFiles.c

doSynchroniseFiles

doSynchroniseFiles is called from doldle when the installed timer fires (every 15 ticks when a document window is the front
window).

A reference to the front non-floating window is obtained. The while loop walks the document window section of the window
list (see the call to GetNextWindow at the bottom of the loop) looking for associated files whose locations have changed.
When the last window in the list has been examined, the loop exits.

Within the while loop, GetWRefCon is called to retrieve the handle to the window's document structure.

If the aliasHdI field of the window's document structure contains NULL, the window does not yet have a file associated with it,
in which case execution falls through to the next iteration of the while loop and the next window is examined.

If the window has an associated file, the handle to the associated alias structure, which contains the alias data for the file, is
retrieved. ResolveAlias is then called to perform a search for the target of the alias, returning the file system specification for
the target file in the third parameter. After identifying the target, ResolveAlias compares some key information about the
target with the information in the alias structure. If the information differs, ResolveAlias updates the alias structure to match
the target and sets the aliasChanged parameter to true.

If the aliasChanged parameter is set to true, meaning that the location of the file has changed, the fileFSSpec field of the
window's document structure is assigned the file system specification structure returned by ResolveAlias. Since it is also
possible that the user has renamed the file, SetWTitle is called to set the window's title to the filename contained in the name
field of the file system specification structure returned by ResolveAlias.

The next task is to determine whether the user has moved the file to the trash or to a folder in the trash, in which case the
document must be closed.

FindFolder is called to get the volume reference number and parent directory ID of the trash folder. (Note that kUserDomain
is passed in the vRefNum parameter. On Mac OS 8/9, this is mapped to kOnSystemDisk.)

The do/while loop walks up the parent folder hierarchy to the root folder. At the first line in the do/while loop, if the root folder
has been reached (fsRtParlD is the parent ID of the root directory), the file is not in the trash, in which case the loop exits at
that point. At the next if statement, the volume reference number and parent directory ID of the file are compared with the
volume reference number and directory ID of the trash. If they match, the file is closed, its associated memory is disposed of,
and the window is disposed of.

The bottom line of the do/while loop effects the walk up the parent directory hierarchy, FSMakeFSSpec creates a file system
specification structure from the current contents of the vRefNum and parlD fields of newFSSPec. Since newFSSpec is also the
target, the parlD field is "filled in" again, at every iteration of the loop, with the parent ID of the directory passed in the second
parameter of the FSMakeFSSpec call.

18-70 Version 1.0 Files and Navigation Services

ChooseAFolderDialog.c

doChooseAFolderDialog

doChooseAFolderDialog, which is called when the user chooses the Choose a Folder Dialog item in the demonstration menu,
creates and displays a Choose a Folder dialog.

NavGetDefaultDialogCreationOptions initialises the specified NavDialogCreation Options structure with the defaults.
GetIndString retrieves a Pascal string, which is converted to a CFString and assigned to the message field of a
NavDialogOptions structure. This will appear immediately below the browser list in the Mac OS 8/9 dialog and above the
browser list in the Mac OS X dialog.

The next line ensures that the dialog will be application-modal.

NavCreateChooseFolderDialog creates the dialog and NavDialogRun displays it.

Files and Navigation Services Version 1.0 18-71

	FILES AND NAVIGATION SERVICES
	Demonstration Program: Files
	Introduction
	This chapter addresses:
	Files
	Types of Files
	Characteristics of Files
	File Forks
	File Size
	Volumes
	Logical Blocks and Allocation Blocks

	Note
	Physical and Logical End-Of-File

	Fig 2 illustrates logical end-of-file and physical end-of-file.
	Clumps and Combating File Fragmentation
	File Access
	Access Path and File Reference Number
	File Mark
	Data Buffer
	Disk Cache

	The Hierarchical File System
	Directories and Directory ID
	Root Directory
	Mounted Volumes
	Parent Directory and Parent Directory ID
	Aliases

	Identifying Files and Directories — File System Specification Structure and File System Reference
	Creating, Opening, Reading From, Writing To, and Closing Files
	General File Menu and Required Apple Events Handling Strategy
	Preliminaries - Creating a Document Structure
	Creating a New Document Window
	Opening a File and Reading in Data
	Opening the Navigation Services Open Dialog
	Creating a Window and Opening the File
	Reading File Data

	Saving a File
	Handling the Save Command
	Handling the Save As… Command
	Writing File Data

	Reverting to a Saved File
	Closing a File

	File Synchronisation Functions

	Navigation Services
	Navigation Services Dialogs and Alerts
	Modality
	Standard User Interface Elements in Primary Dialogs
	Preview
	Persistence

	Creating and Displaying an Open Dialog
	The NavDialogCreationOptions Structure
	Field Descriptions

	The Show Pop-up Menu
	Native File Types Section
	The NavTypeList Structure

	Creating and Displaying a Save Location Dialog
	Creating and Displaying a Choose a Folder Dialog
	Creating and Displaying Primary Alerts
	Save Changes Alert
	Discard Changes Alert
	Review Changes Alert — Mac OS X

	Event Handling in the Primary Dialogs
	Event-Handling Function
	kNavCBUserAction Message Received
	The NavReplyRecord Structure
	Field Descriptions

	Responding to User Actions

	kNavCBTerminate Message Received

	Event Handling in Primary Alerts
	Other Application-Defined (Callback) Functions
	Application-Defined Object Filtering
	Application-Defined (Callback) Previews

	Main File Manager Constants, Data Types and Functions
	Constants
	Read/Write Permission
	File Mark Positioning Modes

	Data Types
	File System Specification Structure
	File System Reference
	File Information Structure

	Functions
	Reading, Writing and Closing Files
	Manipulating the File Mark
	Manipulating the End-Of-File
	Opening and Creating Files
	Deleting Files and Directories
	Exchanging Data in Two Files
	Creating File System Specifications and File System References
	Obtaining Volume Information
	Getting and Setting Finder Information

	Relevant Resource Manager Functions
	Creating and Opening Resource Files

	Relevant Finder Interface Functions
	Find a Specified Folder

	Main Navigation Services Constants, Data Types, and Functions
	Constants
	Dialog Option Flags
	Event Messages
	User Action
	Save Changes Action

	Data Types
	NavDialogCreationOptions
	NavTypeList
	NavCBRec
	NavReplyRecord

	Functions
	Initialising the NavDialogCreationOptions Structure
	Creating and Disposing Of Navigation Services Dialogs
	Displaying and Running a Navigation Services Dialog
	Filling In and Disposing Of NavReplyRecord Structures
	Getting the User Action
	Getting and Setting the Save File Name
	Completing a Save Operation
	Getting the Window In Which a Navigation Services Dialog Appears
	Creating New Folders
	Creating Previews
	Creating and Disposing of Universal Procedure Pointers
	Application-Defined (Callback) Functions - Event Handling, Previews, and Filters

	Demonstration Program Files Listing
	Demonstration Program Files Comments
	Files.h
	defines
	typedefs

	Files.c
	Global Variables
	main
	doInstallAEHandlers
	windowEventHandler
	doIdle
	doDrawContent
	doMenuChoice
	doAdjustMenus
	doTouchWindow
	openAppEventHandler, reopenAppEventHandler, and openAndPrintDocsEventHandler
	quitAppEventHandler

	NewOpenCloseSave.c
	Global Variables
	doNewCommand
	doOpenCommand
	doCloseCommand
	doSaveCommand
	doSaveAsCommand
	doRevertCommand
	doNewDocWindow
	doCloseDocWindow
	doOpenFile
	doCreateAskSaveChangesDialog
	doSaveUsingFSSPec
	doSaveUsingFSRef
	doWriteFile
	doReadTextFile

	The first two lines retrieve the file reference number from the document structure.
	doReadPictFile
	doWriteTextData
	doWritePictData
	getFilePutFileEventFunction
	askSaveDiscardEventFunction
	doCopyResources
	doCopyAResource
	SynchroniseFiles.c
	doSynchroniseFiles

	ChooseAFolderDialog.c
	doChooseAFolderDialog

	The next line ensures that the dialog will be application-modal.
	NavCreateChooseFolderDialog creates the dialog and NavDialogRun displays it.

